题目内容
8.根据如下样本数据:x | 3 | 4 | 5 | 6 | 7 | 8 |
y | -3.0 | -2.0 | 0.5 | -0.5 | 2.5 | 4.0 |
A. | a>0,b>0 | B. | a<0,b<0 | C. | a>0,b<0 | D. | a<0,b>0 |
分析 利用公式求出b,a,即可得出结论.
解答 解:样本平均数$\overline{x}$=5.5,$\overline{y}$=0.25,
∴$\sum_{i=1}^{6}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$=23.75,$\sum_{i=1}^{6}({x}_{i}-\overline{x})^{2}$=17.5,∴b≈1.4>0,
∴a=0.25-1.4•5.5<0,
故选:D.
点评 本题考查线性回归方程的求法,考查最小二乘法,属于基础题.
练习册系列答案
相关题目
20.在中学生综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下:
表1:男生
表2:女生
(1)从表二的非优秀学生中随机选取2人交谈,求所选2人中恰有1人测评等级为合格的概率;
(2)从表二中统计数据填写下边2×2列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.
参考数据与公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
临界值表:
表1:男生
等级 | 优秀 | 合格 | 尚待改进 |
频数 | 15 | x | 5 |
等级 | 优秀 | 合格 | 尚待改进 |
频数 | 15 | 3 | y |
(2)从表二中统计数据填写下边2×2列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.
男生 | 女生 | 总计 | |
优秀 | |||
非优秀 | |||
总计 |
临界值表:
P(K2>k0) | 0.10 | 0.05 | 0.01 |
k0 | 2.706 | 3.841 | 6.635 |
17.已知Sn表示等差数列{an}的前n项和,且$\frac{a_1}{a_5}=\frac{3}{7}$,那么$\frac{S_5}{{{S_{20}}}}$( )
A. | $\frac{1}{9}$ | B. | $\frac{1}{10}$ | C. | $\frac{1}{8}$ | D. | $\frac{1}{3}$ |