题目内容
【题目】已知椭圆中心在坐标原点,焦点在轴上,且过,直线与椭圆交于,两点(,两点不是左右顶点),若直线的斜率为时,弦的中点在直线上.
(Ⅰ)求椭圆的方程.
(Ⅱ)若以,两点为直径的圆过椭圆的右顶点,则直线是否经过定点,若是,求出定点坐标,若不是,请说明理由.
【答案】(1) 椭圆的方程为:;(2)见解析.
【解析】
(1)根据斜率公式以及中点坐标公式得,,再由椭圆的标准方程利用点差法得,因此可得,最后与在椭圆上联立方程组解得,(2)根据以,两点为直径的圆过椭圆的右顶点,得,设直线方程,与椭圆方程联立,利用韦达定理代入化简得,解得或,即得定点,最后验证斜率不存在的情形也满足.
(Ⅰ)设椭圆的标准方程为,,
由题意直线的斜率为,弦的中点在直线上,得,,
再根据作差变形得 ,所以,又因为椭圆过得到,
所以椭圆的方程为:.
(Ⅱ)由题意可得椭圆右顶点,
⑴当直线的斜率不存在时,设直线的方程为,此时要使以,两点为直径的圆过椭圆的右顶点则有以解得或(舍)此时直线为
⑵当直线的斜率存在时,设直线的方程为,则有,
化简得①
联立直线和椭圆方程得,
, ②
把②代入①得
即
,得或此时直线过或(舍)
综上所述直线过定点.
练习册系列答案
相关题目