题目内容
【题目】某学校为了解高三复习效果,从高三第一学期期中考试成绩中随机抽取50名考生的数学成绩,分成6组制成频率分布直方图如图所示:
(1)求的值及这50名同学数学成绩的平均数;
(2)该学校为制定下阶段的复习计划,从成绩在的同学中选出3位作为代表进行座谈,若已知成在的同学中男女比例为2:1,求至少有一名女生参加座谈的概率.
【答案】(1) ,121.8(2)
【解析】试题分析:(1)先根据频率分布直方图中小长方形面积等于对应区间的概率,所以小长方形面积和为1,因此求得m;根据组中值与对应区间概率乘积的和等于平均值得;(2)先根据比例得男生4人,女生2人,再利用枚举法得从6名同学中选出3人的所有事件数,确定其中不含女生的事件数,得至少有一名女生事件数,最后根据古典概型概率公式求概率
试题解析:(Ⅰ)由题 解得
(Ⅱ)由频率分布直方图可知,成绩在的同学有(人),
由比例可知男生4人,女生2人,记男生分别为A、B、C、D;女生分别为x、y,
则从6名同学中选出3人的所有可能如下:ABC、ABD、ABx、ABy、ACD、ACx、ACy、ADx、ADy、BCD、BCx、BCy、BDx、BDy、CDx、CDy、Axy、Bxy、Cxy、Dxy——共20种
其中不含女生的有4种ABC、ABD、ACD、BCD
设:至少有一名女生参加座谈为事件A
则
练习册系列答案
相关题目