题目内容

已知二次函数f(x)=x2+(2a-1)x+1-2a.
(1)判断命题“对于任意的a∈R(R为实数集),方程f(x)=1必有实数根”的真假,并写出判断过程.
(2)若y=f(x)在区间(-1,0)及(0,)内各有一个零点,求实数a的范围.
(1) 真命题.理由见解析  (2) <a<
(1)“对于任意的a∈R(R为实数集),方程f(x)=1必有实数根”是真命题.
依题意:f(x)=1有实根,即x2+(2a-1)x-2a=0有实根,
∵Δ=(2a-1)2+8a=(2a+1)2≥0对于任意的a∈R(R为实数集)恒成立,即x2+(2a-1)x-2a=0必有实数根,从而f(x)=1必有实数根.
(2)依题意:要使y=f(x)在区间(-1,0)及(0,)内各有一个零点,
只需解得<a<.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网