题目内容

△ABC中,a、b、c是内角A、B、C的对边,且lgsinA,lgsinB,lgsinC成等差数列,则下列两条直线l1:(sin2A)x+(sinA)y-a=0,l2:(sin2B)x+(sinC)y-c=0的位置关系是
 
分析:由等差数列的性质得sin2B=sinA•sinC,分别化简两直线方程的一次项系数与常数项之比的结果,从而得到结论.
解答:解析:由已知2lgsinB=lgsinA+lgsinC,得  lg(sinB)2=lg(sinA•sinC).
∴sin2B=sinA•sinC.  
设l1:a1x+b1y+c1=0,l2:a2x+b2y+c2=0.
a1
a2
=
sin2A
sin2B
=
sin2A
sinAsinC
=
sinA
sinC
b1
b2
=
sinA
sinC
c1
c2
=
-a
-c
=
-2RsinA
-2RsinC
=
sinA
sinC

a1
a2
=
b1
b2
=
c1
c2

∴l1与l2重合,
故答案为重合.
点评:本题考查等差数列的性质,两直线位置关系的判定方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网