题目内容

.(本题满分16分)
点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于轴上方,
(1)求点P的坐标;
(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于,求点M的坐标;
(3)在(2)的条件下,求椭圆上的点到点M的距离的最小值.
解:(1)由已知可得点A(-6,0),F(4,0)
设点P的坐标是,由已知得

由于
(2)直线AP的方程是
设点M的坐标是(m,0),则M到直线AP的距离是
于是
椭圆上的点到点M的距离d有

由于
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网