ÌâÄ¿ÄÚÈÝ
10£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬ÍÖÔ²µÄ¶ÌÖá¶ËµãÓëË«ÇúÏß$\frac{{y}^{2}}{2}$-x2=1µÄ½¹µãÖغϣ®£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèP£¨x0£¬y0£©£¨x0y0¡Ù0£©ÎªÍÖÔ²CÉÏÒ»µã£¬¹ýµãP×÷xÖáµÄ´¹Ïߣ¬´¹×ãΪQ£¬È¡µãB£¨0£¬2£©£¬Á¬½áBQ£¬¹ýµãB×÷BQµÄ´¹Ïß½»xÖáÓÚµãD£¬µãEÊǵãD¹ØÓÚyÖáµÄ¶Ô³Æµã£¬ÊÔÅжÏÖ±ÏßPEÓëÍÖÔ²CµÄλÖùØϵ£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®
·ÖÎö £¨1£©ÓÉÍÖÔ²µÄÀëÐÄÂʹ«Ê½ºÍË«ÇúÏߵĽ¹µã×ø±ê£¬¿ÉµÃÍÖÔ²µÄb£¬ÔÙÓÉa£¬b£¬cµÄ¹Øϵ£¬½âµÃa£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©ÉèD£¨d£¬0£©£¬ÇóµÃÏòÁ¿BD£¬BQµÄ×ø±ê£¬ÓÉ´¹Ö±µÄÌõ¼þ¿ÉµÃd£¬Çó³öÖ±ÏßPEµÄбÂʺͷ½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃÅбðʽ£¬¼´¿ÉÅжÏËüÃǵÄλÖùØϵ£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃe=$\frac{1}{2}$£¬¼´$\frac{c}{a}$=$\frac{1}{2}$£¬
ÓÖË«ÇúÏß$\frac{{y}^{2}}{2}$-x2=1µÄ½¹µãΪ£¨0£¬$¡À\sqrt{3}$£©£¬
¼´ÓÐb=$\sqrt{3}$£¬a2-c2=3£¬
½âµÃa=2£¬
ÔòÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1£»
£¨2£©ÓÉÌâÒâÖªµãQµã×ø±êΪ£¨x0£¬0£©£¬
ÉèD£¨d£¬0£©£¬Ôò$\overrightarrow{BD}$=£¨d£¬-2£©£¬$\overrightarrow{BQ}$=£¨x0£¬-2£©£¬
ÓÉBD¡ÍBQ£¬µÃ$\overrightarrow{BD}$•$\overrightarrow{BQ}$=0£¬¡àdx0+4=0£¬¡àd=-$\frac{4}{{x}_{0}}$£®
ÓɵãEÊǵãD¹ØÓÚyÖáµÄ¶Ô³Æµã£¬µÃµãE£¨$\frac{4}{{x}_{0}}$£¬0£©£®
Ö±ÏßPEµÄбÂÊΪ$\frac{{x}_{0}{y}_{0}}{{{x}_{0}}^{2}-4}$£¬
ÒòµãPÔÚÍÖÔ²CÉÏ£¬¹Ê3x02+4y02=12£®
ÓÚÊÇÖ±ÏßPEµÄбÂÊΪ-$\frac{3{x}_{0}}{4{y}_{0}}$£¬Æä·½³ÌΪy=-$\frac{3{x}_{0}}{4{y}_{0}}$£¨x-$\frac{4}{{x}_{0}}$£©£®
´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃ3x02+4y02=12£¬
»¯¼òµÃx2-2x0x+x02=0£®
Òò¡÷=4x02-4x02=0£¬¹Ê·½³Ì×éÓÐÁ½×éÏàͬµÄʵÊý½â£¬
ËùÒÔÖ±ÏßPEÓëÍÖÔ²CÏàÇУ®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌºÍÐÔÖÊ£¬Ö÷Òª¿¼²éÍÖÔ²µÄÀëÐÄÂʺͷ½³ÌµÄÔËÓã¬ÁªÁ¢Ö±Ïß·½³ÌÅжÏÖ±ÏߺÍÍÖÔ²µÄλÖùØϵ£¬×¢ÒâÔËÓõãÔÚÇúÏßÉÏ£¬µãÂú×ã·½³Ì£¬Í¬Ê±¿¼²éÖ±ÏßµÄбÂʺÍÖ±Ïß·½³Ì£¬ÊôÓÚÖеµÌ⣮
A£® | 16 | B£® | 14 | C£® | 4 | D£® | 2 |
A°à | 5 | 5 | 8 | 8 | 9 |
B°à | m | 4 | 7 | n | 8 |
£¨1£©Çó±í¸ñÖÐmºÍnµÄÖµ£»
£¨2£©Èô´Ó³éÈ¡µÄB°à5ÈËÖÐÈÎÈ¡2ÈË£¬Çó2È˶¼ºÏ¸ñµÄ¸ÅÂÊ£®
X | 0 | 1 |
P | $\frac{a}{2}$ | $\frac{{a}^{2}}{2}$ |
A£® | 2 | B£® | 2»ò$\frac{1}{2}$ | C£® | $\frac{1}{2}$ | D£® | 1 |