题目内容
【题目】《最强大脑》是江苏卫视推出国内首档大型科学类真人秀电视节目,该节目集结了国内外最顶尖的脑力高手,堪称脑力界的奥林匹克,某校为了增强学生的记忆力和辨识力也组织了一场类似《最强大脑》的PK赛,A、B两队各由4名选手组成,每局两队各派一名选手PK,除第三局胜者得2分外,其余各局胜者均得1分,每局的负者得0分,假设每局比赛两队选手获胜的概率均为0.5,且各局比赛结果相互独立.
(1)求比赛结束时A队的得分高于B队的得分的概率;
(2)求比赛结束时B队得分X的分布列和期望.
【答案】
(1)解:设事件“比赛结束时A队的得分高于B队的得分”为A,事件“比赛结束时B队的得分高于a队的得分”,事件“比赛结束时A队的得分等于B队的得分”为事件C,根据:每局比赛两队选手获胜的概率均为0.5,
则P(A)=P(B),P(A)+P(B)+P(C)=1,P(C)=0.
∴P(A)=
(2)解:X的可能取值为0,1,2,3,4,5.
P(X=0)= = ,P(X=1)= = ,
P(X=2)= + = ,
P(X=3)= + × = ,
P(X=4)= = ,P(X=5)= = .
X | 0 | 1 | 2 | 3 | 4 | 5 |
P |
E(X)=0× +1× +2× +3× +4× +5× =
【解析】(1)设事件“比赛结束时A队的得分高于B队的得分”为A,事件“比赛结束时B队的得分高于a队的得分”,事件“比赛结束时A队的得分等于B队的得分”为事件C,根据:每局比赛两队选手获胜的概率均为0.5,可得P(A)=P(B),P(A)+P(B)+P(C)=1,P(C)=0.即可得出P(A).(2)X的可能取值为0,1,2,3,4,5.根据相互独立与互斥事件的概率计算公式即可得出.
练习册系列答案
相关题目