题目内容
【题目】如图所示的多面体的底面为直角梯形,四边形为矩形,且,,,,,,分别为,,的中点.
(1)求证:平面;
(2)求直线与平面所成角的余弦值.
【答案】(1)答案见解析.(2)
【解析】
(1)先证明平面,可得,取中点,利用等腰三角形的性质可得,由线面垂直的判定即可得证;
(2)建立空间直角坐标系,求出各点坐标后,再求出平面的一个法向量和直线的方向向量,求出两向量夹角的余弦值后利用平方关系即可得解.
(1)证明:,分别为,的中点,,
四边形为矩形,,
又,,,平面,
平面,平面,,
取中点,连接,,,则,
点,,,同在平面内.
在中,,,为中点,
,
又,,平面,平面.
(2)由(1)知,,三条直线两两垂直且交于点,以为原点,,,分别为,,轴,建立空间直角坐标系,如图.
则,,,,
,分别为,中点,可得,,
,,,
设平面的一个法向量为,则,即,
令,可得,,,
所以.
所以与平面所成角的余弦值为.
【题目】改革开放以来,中国快递行业持续快速发展,快递业务量从上世纪年代的万件提升到2018年的亿件,快递行业的发展也给我们的生活带来了很大便利.已知某市某快递点的收费标准为:首重(重量小于等于)收费元,续重元(不足按算). (如:一个包裹重量为则需支付首付元,续重元,一共元快递费用)
(1)若你有三件礼物重量分别为,要将三个礼物分成两个包裹寄出(如:合为一个包裹,一个包裹),那么如何分配礼物,使得你花费的快递费最少?
(2)为了解该快递点2019年的揽件情况,在2019年内随机抽查了天的日揽收包裹数(单位:件),得到如下表格:
包裹数(单位:件) | ||||
天数(天) |
现用这天的日揽收包裹数估计该快递点2019年的日揽收包裏数.若从2019年任取天,记这天中日揽收包裹数超过件的天数为随机变量求的分布列和期望
【题目】某大型单位举行了一次全体员工都参加的考试,从中随机抽取了20人的分数.以下茎叶图记录了他们的考试分数(以十位数字为茎,个位数字为叶):若分数不低于95分,则称该员工的成绩为“优秀”.
组别 | 分组 | 频数 | 频率 | |
1 | ||||
2 | ||||
3 | ||||
4 |
(Ⅰ)从这20人中成绩为“优秀”的员工中任取2人,求恰有1人的分数为96的概率;
(Ⅱ)根据这20人的分数补全频率分布表和频率分布直方图,并根据频率分布直方图估计所有员工的平均分数(同一组中的数据用该组区间的中点值作代表).
【题目】近年来,随着互联网的发展,诸如“滴滴打车”“神州专车”等网约车服务在我国各:城市迅猛发展,为人们出行提供了便利,但也给城市交通管理带来了一些困难.为掌握网约车在省的发展情况,省某调查机构从该省抽取了个城市,分别收集和分析了网约车的两项指标数,数据如下表所示:
城市1 | 城市2 | 城市3 | 城市4 | 城市5 | |
指标数 | |||||
指标数 |
经计算得:
(1)试求与间的相关系数,并利用说明与是否具有较强的线性相关关系(若,则线性相关程度很高,可用线性回归模型拟合);
(2)立关于的回归方程,并预测当指标数为时,指标数的估计值.
附:相关公式:,
参考数据: