题目内容
【题目】定义在上的函数同时满足下列两个条件:①对任意的恒有成立;②当时,.记函数,若函数恰有两个零点,则实数的取值范围是( )
A.B.C.D.
【答案】D
【解析】
根据题中的条件得到函数的解析式为:f(x)=﹣x+2b,x∈(b,2b],又因为f(x)=k(x﹣1)的函数图象是过定点(1,0)的直线,再结合函数的图象根据题意求出参数的范围即可.
解:∵对任意的x∈(1,+∞)恒有f(2x)=2f(x)成立,且当x∈(1,2]时,f(x)=2﹣x,
∴f(x)=﹣x+2b,x∈(b,2b].
由题意得f(x)=k(x﹣1)的函数图象是过定点(1,0)的直线,
如图所示红色的直线与线段AB相交即可(可以与B点重合但不能与A点重合),
∴可得k的范围为:,
故选:D.
练习册系列答案
相关题目