题目内容

(本题满分14分)

已知数列满足,数列满足.

(1)求证:数列是等差数列;

(2)设,求满足不等式的所有正整数的值.

 

【答案】

(1)证明:由,计算中,得

即得。(2)满足不等式的所有正整数的值为2,3,4。

【解析】

试题分析:(1)证明:由,则

代入中,得

即得。所以数列是等差数列。………………6分

(2)解:因为数列是首项为,公差为等差数列,

,则。………………8分

从而有

。…………11分

,由,得

,得

故满足不等式的所有正整数的值为2,3,4。………………14分

考点:本题主要考查等差数列、等比数列的的基础知识,“公式法”求和,放缩法证明不等式。

点评:中档题,本题综合考查等差数列、等比数列的基础知识,本解答从确定通项公式入手,明确了所研究数列的特征。“公式法”求数列的前n项和是高考常常考到数列求和方法。不等式的证明应用了“放缩法”。

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网