题目内容
下列说法中
① 若定义在R上的函数满足,则6为函数的周期;
② 若对于任意,不等式恒成立,则;
③ 定义:“若函数对于任意R,都存在正常数,使恒成立,则称函数为有界泛函.”由该定义可知,函数为有界泛函;
④对于函数 设,,…,(且),令集合,则集合为空集.正确的个数为
A.1个 | B.2个 | C.3个 | D.4个 |
B
解析试题分析:① 因为,所以,所以函数的周期为6。所以若定义在R上的函数满足,则6为函数的周期,正确;
② 若对于任意,不等式恒成立,
即。所以错误;
③若命题成立,则必有,x∈R恒成立,这是不可能的,故不对;
④对于函数 易知,,,……,故的值是以4为周期重复出现的,所以,则集合为空集.,正确。
考点:函数的周期性;二次函数的性质;空集的性质。
点评:本题主要考查函数的周期,恒成立求参数,利用周期性求值,新定义函数的正确性验证,本题作为一个选择题运算量大,且变形技巧性强,实为得分不易之题.
练习册系列答案
相关题目
函数+1(a>0,a≠1)的图象必经过定点 ( )
A.(0,1) | B.(2,1) | C.(2,2) | D.(2,3) |
下列函数是偶函数,且在上单调递减的是 ( )
A. | B. | C. | D. |
若a是函数的零点,若,则的值满足
A. | B. | C. | D.的符号不确定 |
设函数f (x)=x3-4x+a,0<a<2.若f (x)的三个零点为x1,x2,x3,且x1<x2<x3,则
A.x1>-1 | B.x2<0 | C.x2>0 | D.x3>2 |