题目内容
((本题满分14分)
已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE = x,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).
(1)当x=2时,求证:BD⊥EG ;
(2)若以F、B、C、D为顶点的三棱锥的体积记为,
求的最大值;
(3)当取得最大值时,求二面角D-BF-C的余弦值.
【答案】
(1)略
(2)
(3)-
【解析】1)方法一:∵平面平面,
AE⊥EF,∴AE⊥平面,AE⊥EF,AE⊥BE,
又BE⊥EF,故可如图建立空间坐标系E-xyz.
,又为BC的中点,BC=4,
.则A(0,0,2),B(2,0,0),G(2,2,0),D(0,2,2),E(0,0,0),
(-2,2,2),(2,2,0),
(-2,2,2)(2,2,0)=0,∴.………………4分
方法二:作DH⊥EF于H,连BH,GH,
由平面平面知:DH⊥平面EBCF,
而EG平面EBCF,故EG⊥DH.
为平行四边形,且
,四边形BGHE为正方形,∴EG⊥BH,BHDH=H,
故EG⊥平面DBH,
而BD平面DBH,∴ EG⊥BD.………4分
(或者直接利用三垂线定理得出结果)
(2)∵AD∥面BFC,
所以 =VA-BFC=
,
即时有最大值为. ………8分
(3)设平面DBF的法向量为,∵AE=2, B(2,0,0),D(0,2,2),
F(0,3,0),∴………10分
(-2,2,2),
则 ,
即,
取,∴
,面BCF一个法向量为,………12分
则cos<>=,………13分
由于所求二面角D-BF-C的平面角为钝角,所以此二面角的余弦值为-.………14分
练习册系列答案
相关题目