题目内容

7.已知a,b,c分别为△ABC三个内角A,B,C的对边,bcosC+$\sqrt{3}$bsinC-a-c=0.
(Ⅰ)求∠B的值;
(Ⅱ)若b=$\sqrt{3}$,求a+c的最大值.

分析 (Ⅰ)已知等式利用正弦定理化简,整理后得到sin(B-$\frac{π}{6}$)=$\frac{1}{2}$,利用特殊角的三角函数值即可求出B的大小;
(Ⅱ)由已知可得a+c=2$\sqrt{3}$sin(C+$\frac{π}{6}$),由于$\frac{π}{6}$<C+$\frac{π}{6}$<$\frac{5π}{6}$,则$\frac{1}{2}$<sin(C+$\frac{π}{6}$)≤1,即可求得a+c的取值范围.

解答 解:(Ⅰ)将bcosC+$\sqrt{3}$bsinC-a-c=0,利用正弦定理化简得:sinBcosC+$\sqrt{3}$sinBsinC-sinA-sinC=0,
可得:sinBcosC+$\sqrt{3}$sinBsinC=sinA+sinC=sin(B+C)+sinC=sinBcosC+cosBsinC+sinC=sinBcosC+sinC(cosB+1),
∴$\sqrt{3}$sinB=cosB+1,即sin(B-$\frac{π}{6}$)=$\frac{1}{2}$,
∵0<B<π,
∴-$\frac{π}{6}$<B-$\frac{π}{6}$<$\frac{5π}{6}$,
∴B-$\frac{π}{6}$=$\frac{π}{6}$,即B=$\frac{π}{3}$;
(Ⅱ)A+C=π-B=$\frac{2π}{3}$,则0<C<$\frac{2π}{3}$,
则a+c=bcosC+$\sqrt{3}$bsinC=$\sqrt{3}$cosC+3sinC=2$\sqrt{3}$($\frac{1}{2}$cosC+$\frac{\sqrt{3}}{2}$sinC)=2$\sqrt{3}$sin(C+$\frac{π}{6}$),
由于$\frac{π}{6}$<C+$\frac{π}{6}$<$\frac{5π}{6}$,则$\frac{1}{2}$<sin(C+$\frac{π}{6}$)≤1,
则a+c的取值范围是($\sqrt{3}$,2$\sqrt{3}$].

点评 此题考查了正弦、余弦定理,三角形面积公式,熟练掌握定理及公式是解本题的关键,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网