题目内容

已知,
lim
x→2
x2+cx+2
x-2
=a,且函数y=alnx+
b
x
+c在(1,e)上具有单调性,则b的取值范围是(  )
A、(-∞,1]∪[e,+∞]
B、(-∞,0]∪[e,+∞]
C、(-∞,e]
D、[1,e]
分析:先由
lim
x→2
x2+cx+2
x-2
=a,求得a=1,c=-3,从而得到y=alnx+
b
x
+c=lnx+
b
x
-3
,再由“函数y=alnx+
b
x
+c在(1,e)上具有单调性”转化为“y′=
1
x
-
b
x2
≥0
y′=
1
x
-
b
x2
≤0
在(1,e)上恒成立”,再令t=
1
x
∈(
1
e
 ,1
)转化为-bt2+t≥0或-bt2+t≤0在(
1
e
 ,1
)上恒成立,由二次函数的性质求解.
解答:解:∵
lim
x→2
x2+cx+2
x-2
=a,
∴a=1,c=-3,
∴y=alnx+
b
x
+c=lnx+
b
x
-3

∵函数y=alnx+
b
x
+c在(1,e)上具有单调性
y′=
1
x
-
b
x2
≥0
y′=
1
x
-
b
x2
≤0
在(1,e)上恒成立
∴令t=
1
x
∈(
1
e
 ,1

∴-bt2+t≥0或-bt2+t≤0
∴b≤1或b≥e
故选A
点评:本题主要考查导数法研究函数的单调性,基本思路:当函数是增函数时,导数大于等于零恒成立,当函数是减函数时,导数小于等于零恒成立,然后转化为求相应函数的最值问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网