题目内容
【题目】在直角坐标系中,以坐标原点为极点, 轴的非负半轴为极轴建立极坐标系.已知点 的极坐标为 ,直线 的极坐标方程为 ,且点 在直线 上.
(1)求 的值及直线 的直角坐标方程;
(2)圆 的极坐标方程为 ,试判断直线 与圆 的位置关系.
【答案】
(1)解:由点 在直线 上,可得 ,
所以直线 的方程可化为 ,
从而直线 的直角坐标方程为
(2)解:由已知得圆C的直角坐标方程为 ,
所以圆心为 ,半径r=1,所以圆心到直线的距离 ,
所以直线 与圆 相交.
【解析】本题应用到的公式有:.ρ sin θ = y、ρ cos θ = x、.ρ2=x 2 + y 2、、点到直线的距离为:
1.将极坐标带入极坐标方程即可得到a,由直线方程与极坐标方程互化原则即可得到直角坐标方程;2.“判断直线 l 与圆 C 的位置”先算出圆的直角坐标方程根据圆心到直线的距离与圆半径相比较即可确定直线 l 与圆 C 的位置。
【题目】设椭圆的右焦点为,右顶点为,已知,其中为原点,为椭圆的离心率.
(1)求椭圆的方程;
(2)设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线的斜率的取值范围.
【题目】某水仙花经营部每天的房租、水电、人工等固定成本为1000元,每盆水仙花的进价是10元,销售单价(元) ()与日均销售量(盆)的关系如下表,并保证经营部每天盈利.
20 | 35 | 40 | 50 | |
400 | 250 | 200 | 100 |
20 | 35 | 40 | 50 | |
400 | 250 | 200 | 100 |
(Ⅰ) 在所给的坐标图纸中,根据表中提供的数据,描出实数对的对应点,并确定与的函数关系式;
(Ⅱ)求出的值,并解释其实际意义;
(Ⅲ)请写出该经营部的日销售利润的表达式,并回答该经营部怎样定价才能获最大日销售利润?
【题目】某高级中学今年高一年级招收“国际班”学生人,学校为这些学生开辟了直升海外一流大学的绿色通道,为了逐步提高这些学生与国际教育接轨的能力,将这人分为三个批次参加国际教育研修培训,在这三个批次的学生中男、女学生人数如下表:
第一批次 | 第二批次 | 第三批次 | |
女 | |||
男 |
已知在这名学生中随机抽取名,抽到第一批次、第二批次中女学生的概率分别是.
(1)求的值;
(2)为了检验研修的效果,现从三个批次中按分层抽样的方法抽取名同学问卷调查,则三个批次被选取的人数分别是多少?
(3)若从第(2)小问选取的学生中随机选出两名学生进行访谈,求“参加访谈的两名同学至少有一个人来自第一批次”的概率.