题目内容
16.如果一个点是一个指数函数的图象与一个对数函数的图象的公共点,那么称这个点为“好点”.在下面的五个点M(1,1),N(2,1),Q(2,2),C(2,$\frac{1}{2}$)中,“好点”的个数为( )A. | 0 | B. | 1 | C. | 2 | D. | 3 |
分析 根据“好点”的定义,只要判断点在指数函数和对数函数图象上即可.
解答 解:设对数函数为f(x)=logax,指数函数为g(x)=bx,
①∵f(1)=loga1=0,∴M(1,1)不在对数函数图象上,故M(1,1)不是“好点”.
②∵f(2)=loga2=1,∴a=2,即N(2,1)在对数函数图象上,
∵g(2)=b2=1,解得b=1,不成立,即N(2,1)不在指数函数图象上,故N(2,1)不是“好点”.
③∵f(2)=loga2=2,∴a=$\sqrt{2}$,即Q(2,2)在对数函数图象上,
∵g(2)=b2=2,解得b=$\sqrt{2}$,即Q(2,2)在指数函数图象上,故Q(2,2)是“好点”.
④f(2)=loga2=$\frac{1}{2}$,∴a=4,即C(2,$\frac{1}{2}$)在对数函数图象上,
∵g(2)=b2=$\frac{1}{2}$,解得b=$\frac{\sqrt{2}}{2}$即C(2,$\frac{1}{2}$)在指数函数图象上,故C(2,$\frac{1}{2}$)是“好点”.
故Q,C是“好点”,
故选:C
点评 本题主要考查与指数函数和对数函数有关的新定义,定义的实质是解指数方程和对数方程.
练习册系列答案
相关题目
4.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(x,-4)且$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$•$\overrightarrow{b}$=( )
A. | -10 | B. | 10 | C. | -$\sqrt{5}$ | D. | $\sqrt{5}$ |
11.函数y=2sin($\frac{π}{4}$+$\frac{π}{8}$x)的最小正周期为( )
A. | π | B. | 8 | C. | 16 | D. | $\frac{π}{4}$ |
1.过点A(4,y),B(2,-3)的直线的倾斜角为135°,则y等于( )
A. | 1 | B. | -1 | C. | 5 | D. | -5 |
8.已知实数a和b,满足3a+4b=ab(其中a>0,b>0),则a+b的最小值为( )
A. | 7+2$\sqrt{3}$ | B. | 6+2$\sqrt{3}$ | C. | 7+4$\sqrt{3}$ | D. | $6+4\sqrt{3}$ |
5.一个圆锥的底面直径和它的高都与某一个球的直径相等,这时圆锥侧面积与球的表面积之比为( )
A. | $\sqrt{3}$:2 | B. | 4:$\sqrt{3}$ | C. | $\sqrt{5}$:4 | D. | 3:4 |
6.设$\frac{3}{2}$π<α<2π,则$\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos2α}}$=( )
A. | -cos$\frac{α}{2}$ | B. | cos$\frac{α}{2}$ | C. | sin$\frac{α}{2}$ | D. | -sin$\frac{α}{2}$ |