题目内容
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,已知曲线的参数方程为(, 为参数).以坐标原点为极点, 轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为.
(Ⅰ)当时,求曲线上的点到直线的距离的最大值;
(Ⅱ)若曲线上的所有点都在直线的下方,求实数的取值范围.
【答案】(1)(2)
【解析】试题分析:(1)将直线的极坐标方程化为普通方程,进而由圆的参数方程得曲线上的点到直线的距离, ,利用三角函数求最值即可;
(2)曲线上的所有点均在直线的下方,即为对,有恒成立,即(其中)恒成立,进而得.
试题解析:
(1)直线的直角坐标方程为.
曲线上的点到直线的距离,
,
当时, ,
即曲线上的点到直线的距离的最大值为.
(2)∵曲线上的所有点均在直线的下方,
∴对,有恒成立,
即(其中)恒成立,
∴.
又,∴解得,
∴实数的取值范围为.
练习册系列答案
相关题目
【题目】甲、乙两所学校高三年级分别有1 200人,1 000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:
甲校:
分组 | [70,80) | [80,90) | [90,100) | [100,110) |
频数 | 3 | 4 | 8 | 15 |
分组 | [110,120) | [120,130) | [130,140) | [140,150] |
频数 | 15 | x | 3 | 2 |
乙校:
分组 | [70,80) | [80,90) | [90,100) | [100,110) |
频数 | 1 | 2 | 8 | 9 |
分组 | [110,120) | [120,130) | [130,140) | [140,150] |
频数 | 10 | 10 | y | 3 |
则x,y的值分别为( )
(A)、12,7 (B)、 10,7 (C)、 10,8 (D)、 11,9