ÌâÄ¿ÄÚÈÝ
11£®É躯Êýf£¨x£©=$\sqrt{3}$asin¦Øxcos¦Øx+acos2¦Øx-$\frac{1}{2}$£¨¦Ø£¾0£¬a£¾0£©µÄ×î´óֵΪ1£¬ÇÒÆäͼÏóÏàÁÚÁ½Ìõ¶Ô³ÆÖáµÄ¾àÀëΪ$\frac{¦Ð}{2}$£¬Èô½«º¯Êýf£¨x£©µÄͼÏóÏòÓÒƽÒÆ$\frac{¦Ð}{12}$¸öµ¥Î»£¬ËùµÃͼÏó¶ÔÓ¦º¯ÊýΪg£¨x£©£¬Ôò£¨¡¡¡¡£©A£® | f£¨x£©µÄͼÏó¹ØÓÚÖ±Ïßx=$\frac{¦Ð}{3}$¶Ô³Æ£¬g£¨x£©Í¼Ïó¹ØÓÚÔµã¶Ô³Æ | |
B£® | f£¨x£©µÄͼÏó¹ØÓڵ㣨$\frac{¦Ð}{4}$£¬0£©¶Ô³Æ£¬g£¨x£©Í¼Ïó¹ØÓÚÖ±Ïßx=$\frac{¦Ð}{4}$¶Ô³Æ | |
C£® | f£¨x£©µÄͼÏó¹ØÓÚÖ±Ïßx=$\frac{¦Ð}{6}$¶Ô³Æ£¬g£¨x£©Í¼Ïó¹ØÓÚÔµã¶Ô³Æ | |
D£® | f£¨x£©µÄͼÏó¹ØÓڵ㣨$\frac{5¦Ð}{12}$£¬0£©¶Ô³Æ£¬g£¨x£©Í¼Ïó¹ØÓÚÖ±Ïßx=$\frac{¦Ð}{6}$¶Ô³Æ |
·ÖÎö ÓÉÌõ¼þÀûÓÃÈý½ÇºãµÈ±ä»»»¯¼òº¯Êýf£¨x£©µÄ½âÎöʽ£¬ÀûÓÃy=Asin£¨¦Øx+¦Õ£©µÄͼÏó±ä»»¹æÂÉÇóµÃg£¨x£©µÄ½âÎöʽ£¬ÔÙÀûÓÃÕýÏÒº¯ÊýµÄ×îÖµÒÔ¼°ËüµÄͼÏóµÄ¶Ô³ÆÐÔ£¬µÃ³ö½áÂÛ£®
½â´ð ½â£º¡ßº¯Êýf£¨x£©=$\sqrt{3}$asin¦Øxcos¦Øx+acos2¦Øx-$\frac{1}{2}$=$\frac{\sqrt{3}}{2}$asin¦Øx+$\frac{a}{2}$cos¦Øx+$\frac{a-1}{2}$
=asin£¨¦Øx+$\frac{¦Ð}{6}$£©+$\frac{a-1}{2}$£¬
Óɺ¯ÊýµÄ×î´óֵΪa+$\frac{a-1}{2}$=1£¬¿ÉµÃ a=1£¬
ÔÙ¸ù¾Ýº¯ÊýµÄͼÏóÏàÁÚÁ½Ìõ¶Ô³ÆÖáµÄ¾àÀëΪ$\frac{T}{2}$=$\frac{¦Ð}{¦Ø}$=$\frac{¦Ð}{2}$£¬ÇóµÃ¦Ø=2£¬
¹Ê f£¨x£©=sin£¨2x+$\frac{¦Ð}{6}$£©£®
Èô½«º¯Êýf£¨x£©µÄͼÏóÏòÓÒƽÒÆ$\frac{¦Ð}{12}$¸öµ¥Î»£¬ËùµÃͼÏó¶ÔÓ¦º¯ÊýΪg£¨x£©=sin[2£¨x-$\frac{¦Ð}{12}$£©+$\frac{¦Ð}{6}$]=sin2x£¬
µ±x=$\frac{¦Ð}{3}$ʱ£¬f£¨x£©=$\frac{1}{2}$£¬²»ÊÇ×îÖµ£¬¹Êf£¨x£©µÄͼÏó²»¹ØÓÚÖ±Ïßx=$\frac{¦Ð}{3}$¶Ô³Æ£¬¹ÊÅųýA£®
µ±x=$\frac{¦Ð}{4}$ʱ£¬f£¨x£©=$\frac{\sqrt{3}}{2}$£¬¹Êf£¨x£©µÄͼÏó²»¹ØÓڵ㣨$\frac{¦Ð}{4}$£¬0£©¶Ô³Æ£¬¹ÊÅųýB£®
µ±x=$\frac{¦Ð}{6}$ʱ£¬f£¨x£©=1£¬ÊǺ¯ÊýµÄ×î´óÖµ£¬¹Êf£¨x£©µÄͼÏó¹ØÓÚÖ±Ïßx=$\frac{¦Ð}{6}$¶Ô³Æ£¬g£¨x£©Í¼Ïó¹ØÓÚÔµã¶Ô³Æ£¬
¹ÊCÂú×ãÌõ¼þ£®
µ±x=$\frac{5¦Ð}{12}$ʱ£¬f£¨x£©=0£¬ÊǺ¯ÊýµÄ×î´óÖµ£¬¹Êf£¨x£©µÄͼÏó¹ØÓÚ£¨$\frac{5¦Ð}{12}$£¬0£©¶Ô³Æ£¬µ«º¯Êýg£¨x£©=sin2xµÄ
ͼÏó²»¹ØÓÚÖ±Ïßx=$\frac{¦Ð}{6}$¶Ô³Æ£¬¹ÊÅųýD£¬
¹ÊÑ¡£ºC£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÈý½ÇºãµÈ±ä»»¡¢ÀûÓÃÁËy=Asin£¨¦Øx+¦Õ£©µÄͼÏó±ä»»¹æÂÉ£¬ÕýÏÒº¯ÊýµÄ×îÖµÒÔ¼°ËüµÄͼÏóµÄ¶Ô³ÆÐÔ£¬ÊôÓÚÖеµÌ⣮
A£® | $\frac{7}{5}$ | B£® | 2 | C£® | $\frac{9}{5}$ | D£® | $\frac{11}{5}$ |
A£® | £¨-¡Þ£¬-3£©¡È£¨0£¬3£© | B£® | £¨-3£¬0£©¡È£¨3£¬+¡Þ£© | C£® | £¨-¡Þ£¬-3£©¡È£¨3£¬+¡Þ£© | D£® | £¨-3£¬0£©¡È£¨0£¬3£© |