ÌâÄ¿ÄÚÈÝ
¶¨Ò壺ÈôÊýÁÐ{An}Âú×ãAn+1=An2£¬Ôò³ÆÊýÁÐ{An}Ϊ¡°Æ½·½µÝÍÆÊýÁС±£®ÒÑÖªÊýÁÐ{an}ÖУ¬a1=2£¬ÇÒan+1=2an2+2an£¬ÆäÖÐnΪÕýÕûÊý£®£¨1£©Éèbn=2an+1£¬Ö¤Ã÷£ºÊýÁÐ{bn}ÊÇ¡°Æ½·½µÝÍÆÊýÁС±£¬ÇÒÊýÁÐ{lgbn}ΪµÈ±ÈÊýÁУ»
£¨2£©É裨1£©ÖС°Æ½·½µÝÍÆÊýÁС±{bn}µÄÇ°nÏîÖ®»ýΪTn£¬¼´Tn=£¨2a1+1£©£¨2a2+1£©¡£¨2an+1£©£¬ÇóÊýÁÐ{an}µÄͨÏî¼°Tn¹ØÓÚnµÄ±í´ïʽ£»
£¨3£©¼Çcn=
log | Tn 2an+1 |
·ÖÎö£º£¨1£©ÒÀ¾Ý¡°Æ½·½µÝÍÆÊýÁС±¶¨Ò壬½áºÏÌõ¼þan+1=2an2+2an£¬¿ÉÖ¤ÊýÁÐ{bn}ÊÇ¡°Æ½·½µÝÍÆÊýÁС±£¬½ø¶øÓÐlgbn+1=2lgbn£®´Ó¶ø¿ÉÖ¤ÊýÁÐ{lgbn}ΪµÈ±ÈÊýÁУ»
£¨2£©ÓÉ£¨1£©¿ÉµÃan=
£¨52n-1-1£©£¬¶ÔTn=£¨2a1+1£©£¨2a2+1£©¡£¨2an+1£©Á½±ßÈ¡¶ÔÊý£¬¿ÉÇóµÃTn=52n-1£®
£¨3£©cn=2-(
)n-1£¬Sn=2n-2+2(
)n£®ÒªÊ¹Sn£¾2008£¬ÔòÓÐn+(
)n£¾1005£¬´Ó¶ø¿ÉÇónµÄ×îСֵ£®
£¨2£©ÓÉ£¨1£©¿ÉµÃan=
1 |
2 |
£¨3£©cn=2-(
1 |
2 |
1 |
2 |
1 |
2 |
½â´ð£º½â£º£¨1£©ÓÉÌõ¼þan+1=2an2+2an£¬µÃ2an+1+1=4an2+4an+1=£¨2an+1£©2£®
¡à{bn}ÊÇ¡°Æ½·½µÝÍÆÊýÁС±£®¡àlgbn+1=2lgbn£®¡ßlg£¨2a1+1£©=lg5¡Ù0£¬¡à
=2£®
¡à{lg£¨2an+1£©}ΪµÈ±ÈÊýÁУ®
£¨2£©¡ßlg£¨2a1+1£©=lg5£¬¡àlg£¨2an+1£©=2n-1?lg5£¬¡à2an+1=52n-1£¬¡àan=
£¨52n-1-1£©£®
¡ßlgTn=lg£¨2a1+1£©+lg£¨2a2+1£©+¡+lg£¨2an+1£©=
=£¨2n-1£©lg5£®
¡àTn=52n-1£®
£¨3£©cn=
=
=
=2-(
)n-1£¬
¡àSn=2n-[1+
+(
)2++(
)n-1]=2n-
=2n-2[1-(
)n]=2n-2+2(
)n£®
ÓÉSn£¾2008µÃ2n-2+2(
)n£¾2008£¬n+(
)n£¾1005£¬
µ±n¡Ü1004ʱ£¬n+(
)n£¼1005£¬µ±n¡Ý1005ʱ£¬n+(
)n£¾1005£¬¡ànµÄ×îСֵΪ1005£®
¡à{bn}ÊÇ¡°Æ½·½µÝÍÆÊýÁС±£®¡àlgbn+1=2lgbn£®¡ßlg£¨2a1+1£©=lg5¡Ù0£¬¡à
lg(2an+1+1) |
lg(2an+1) |
¡à{lg£¨2an+1£©}ΪµÈ±ÈÊýÁУ®
£¨2£©¡ßlg£¨2a1+1£©=lg5£¬¡àlg£¨2an+1£©=2n-1?lg5£¬¡à2an+1=52n-1£¬¡àan=
1 |
2 |
¡ßlgTn=lg£¨2a1+1£©+lg£¨2a2+1£©+¡+lg£¨2an+1£©=
(1-2n)lg5 |
1-2 |
¡àTn=52n-1£®
£¨3£©cn=
lgTn |
lg(2an+1) |
(2n-1)lg5 |
2n-1lg5 |
2n-1 |
2n-1 |
1 |
2 |
¡àSn=2n-[1+
1 |
2 |
1 |
2 |
1 |
2 |
1-(
| ||
1-
|
1 |
2 |
1 |
2 |
ÓÉSn£¾2008µÃ2n-2+2(
1 |
2 |
1 |
2 |
µ±n¡Ü1004ʱ£¬n+(
1 |
2 |
1 |
2 |
µãÆÀ£º±¾Ì⿼²éж¨Ò壬½«ÊýÁзŵ½ÐÂÇé¾³ÖУ¬¹Ø¼üÊÇÕýÈ·Àí½âÌâÒ⣬ÍÚ¾òÎÊÌâµÄ±¾ÖÊÓëÒþº¬£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿