题目内容

【题目】定义在R上的奇函数f(x)满足:f(x+1)=f(x﹣1),且当﹣1<x<0时,f(x)=2x﹣1,则f(log220)等于(
A.
B.﹣
C.﹣
D.

【答案】D
【解析】解:∵f(x+1)=f(x﹣1) ∴函数f(x)为周期为2的周期函数
又∵log232>log220>log216
∴4<log220<5
∴f(log220)=f(log220﹣4)=f(log2 )=﹣f(﹣log2
又∵x∈(﹣1,0)时,f(x)=2x﹣1
∴f(﹣log2 )=﹣
故f(log220)=
故选:D.
【考点精析】本题主要考查了函数奇偶性的性质的相关知识点,需要掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网