题目内容
设数列{an}的前n项和为Sn,且a1=1,Sn=an+1-1.(Ⅰ)求数列{an}的通项公式;
(Ⅱ)是否存在实数λ,使得数列{Sn+λ•n-λ•2n}为等差数列?若存在,求出λ的值;若不存在,则说明理由.
(Ⅲ)求证:
1 |
3 |
2 |
(a1+1)(a2+1) |
22 |
(a2+1)(a3+1) |
23 |
(a3+1)(a4+1) |
2n |
(an+1)(an+1+1) |
分析:(Ⅰ)由题设条件知(an+1-an)-(Sn-Sn-1)=0?(an+1-an)-an=0?
=2(n≥2),a2=S1+1=a1+1=2,由此可知an=2n-1.
(Ⅱ)若{Sn+λ•n-λ•2n}为等差数列,则S1+λ-2λ,S2+2λ-4λ,S3+3λ-8λ则成等差数列,由此能推出λ=1.由此可知存在实数λ=1,使得数列{Sn+λ•n-λ•2n}成等差数列.
(Ⅲ)由
=
=2(
-
)入手,可得证.
an+1 |
an |
(Ⅱ)若{Sn+λ•n-λ•2n}为等差数列,则S1+λ-2λ,S2+2λ-4λ,S3+3λ-8λ则成等差数列,由此能推出λ=1.由此可知存在实数λ=1,使得数列{Sn+λ•n-λ•2n}成等差数列.
(Ⅲ)由
2k |
(ak+1)(ak+1+1) |
2k |
(2k-1+1)(2k+1) |
1 |
2k-1+1 |
1 |
2k+1 |
解答:解析:(Ⅰ)∵an+1-Sn-1=0①
∴n≥2时,an-Sn-1-1=0②
①─②得:
(an+1-an)-(Sn-Sn-1)=0?(an+1-an)-an=0?
=2(n≥2)(2分)
由an+1-2Sn-1=0及a1=1得a2-S1-1=0?a2=S1+1=a1+1=2
∴{an}是首项为1,公比为2的等比数列,
∴an=2n-1(4分)
(Ⅱ)解法一:由(Ⅰ)知Sn=
=2n-1(5分)
若{Sn+λ•n-λ•2n}为等差数列,
则S1+λ-2λ,S2+2λ-4λ,S3+3λ-8λ则成等差数列,(6分)
∴(S1-λ)+(S3-5λ)=2(S2-2λ)?8-6λ=6-4λ,∴λ=1(8分)
当λ=1时,Sn+λ•n-λ•2n=Sn+n-2n=n-1,显然{n-1}成等差数列,
∴存在实数λ=1,使得数列{Sn+λ•n-λ•2n}成等差数列.(9分)
解法二:由(Ⅰ)知Sn=
=2n-1(5分)
∴Sn+λ•n-λ•2n=(2n-1)+λ•n-λ•2n=λ•n-1+(1-λ)•2n(7分)
要使数列{Sn+λ•n-λ•2n}成等差数列,则只须1-λ=0,即λ=1即可.(8分)
故存在实数λ=1,使得数列{Sn+λ•n-λ•2n}成等差数列.(9分)
(Ⅲ)∵
=
=2(
-
)(10分)
∴
+
+
++
=2[(
-
)+(
-
)+(
-
)++(
-
)]
=2(
-
)(12分)
∵0<
≤
,
∴
≤2(
-
)<1,
∴
≤
+
+
++
<1(14分)
∴n≥2时,an-Sn-1-1=0②
①─②得:
(an+1-an)-(Sn-Sn-1)=0?(an+1-an)-an=0?
an+1 |
an |
由an+1-2Sn-1=0及a1=1得a2-S1-1=0?a2=S1+1=a1+1=2
∴{an}是首项为1,公比为2的等比数列,
∴an=2n-1(4分)
(Ⅱ)解法一:由(Ⅰ)知Sn=
1-2n |
1-2 |
若{Sn+λ•n-λ•2n}为等差数列,
则S1+λ-2λ,S2+2λ-4λ,S3+3λ-8λ则成等差数列,(6分)
∴(S1-λ)+(S3-5λ)=2(S2-2λ)?8-6λ=6-4λ,∴λ=1(8分)
当λ=1时,Sn+λ•n-λ•2n=Sn+n-2n=n-1,显然{n-1}成等差数列,
∴存在实数λ=1,使得数列{Sn+λ•n-λ•2n}成等差数列.(9分)
解法二:由(Ⅰ)知Sn=
1-2n |
1-2 |
∴Sn+λ•n-λ•2n=(2n-1)+λ•n-λ•2n=λ•n-1+(1-λ)•2n(7分)
要使数列{Sn+λ•n-λ•2n}成等差数列,则只须1-λ=0,即λ=1即可.(8分)
故存在实数λ=1,使得数列{Sn+λ•n-λ•2n}成等差数列.(9分)
(Ⅲ)∵
2k |
(ak+1)(ak+1+1) |
2k |
(2k-1+1)(2k+1) |
1 |
2k-1+1 |
1 |
2k+1 |
∴
2 |
(a1+1)(a2+1) |
22 |
(a2+1)(a3+1) |
23 |
(a3+1)(a4+1) |
2n |
(an+1)(an+1+1) |
=2[(
1 |
20+1 |
1 |
2+1 |
1 |
2+1 |
1 |
22+1 |
1 |
22+1 |
1 |
22+1 |
1 |
2k-1+1 |
1 |
2k+1 |
=2(
1 |
2 |
1 |
2k+1 |
∵0<
1 |
2k+1 |
1 |
3 |
∴
1 |
3 |
1 |
2 |
1 |
2k+1 |
∴
1 |
3 |
2 |
(a1+1)(a2+1) |
22 |
(a2+1)(a3+1) |
23 |
(a3+1)(a4+1) |
2n |
(an+1)(an+1+1) |
点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目