题目内容

设数列{an}的前n项和为Sn,且a1=1,Sn=an+1-1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)是否存在实数λ,使得数列{Sn+λ•n-λ•2n}为等差数列?若存在,求出λ的值;若不存在,则说明理由.
(Ⅲ)求证:
1
3
2
(a1+1)(a2+1)
+
22
(a2+1)(a3+1)
+
23
(a3+1)(a4+1)
+…+
2n
(an+1)(an+1+1)
<1
分析:(Ⅰ)由题设条件知(an+1-an)-(Sn-Sn-1)=0?(an+1-an)-an=0?
an+1
an
=2
(n≥2),a2=S1+1=a1+1=2,由此可知an=2n-1
(Ⅱ)若{Sn+λ•n-λ•2n}为等差数列,则S1+λ-2λ,S2+2λ-4λ,S3+3λ-8λ则成等差数列,由此能推出λ=1.由此可知存在实数λ=1,使得数列{Sn+λ•n-λ•2n}成等差数列.
(Ⅲ)由
2k
(ak+1)(ak+1+1)
=
2k
(2k-1+1)(2k+1)
=2(
1
2k-1+1
-
1
2k+1
)
入手,可得证.
解答:解析:(Ⅰ)∵an+1-Sn-1=0①
∴n≥2时,an-Sn-1-1=0②
①─②得:
(an+1-an)-(Sn-Sn-1)=0?(an+1-an)-an=0?
an+1
an
=2
(n≥2)(2分)
由an+1-2Sn-1=0及a1=1得a2-S1-1=0?a2=S1+1=a1+1=2
∴{an}是首项为1,公比为2的等比数列,
∴an=2n-1(4分)
(Ⅱ)解法一:由(Ⅰ)知Sn=
1-2n
1-2
=2n-1
(5分)
若{Sn+λ•n-λ•2n}为等差数列,
则S1+λ-2λ,S2+2λ-4λ,S3+3λ-8λ则成等差数列,(6分)
∴(S1-λ)+(S3-5λ)=2(S2-2λ)?8-6λ=6-4λ,∴λ=1(8分)
当λ=1时,Sn+λ•n-λ•2n=Sn+n-2n=n-1,显然{n-1}成等差数列,
∴存在实数λ=1,使得数列{Sn+λ•n-λ•2n}成等差数列.(9分)
解法二:由(Ⅰ)知Sn=
1-2n
1-2
=2n-1
(5分)
∴Sn+λ•n-λ•2n=(2n-1)+λ•n-λ•2n=λ•n-1+(1-λ)•2n(7分)
要使数列{Sn+λ•n-λ•2n}成等差数列,则只须1-λ=0,即λ=1即可.(8分)
故存在实数λ=1,使得数列{Sn+λ•n-λ•2n}成等差数列.(9分)
(Ⅲ)∵
2k
(ak+1)(ak+1+1)
=
2k
(2k-1+1)(2k+1)
=2(
1
2k-1+1
-
1
2k+1
)
(10分)
2
(a1+1)(a2+1)
+
22
(a2+1)(a3+1)
+
23
(a3+1)(a4+1)
++
2n
(an+1)(an+1+1)

=2[(
1
20+1
-
1
2+1
)+(
1
2+1
-
1
22+1
)+(
1
22+1
-
1
22+1
)++(
1
2k-1+1
-
1
2k+1
)]

=2(
1
2
-
1
2k+1
)
(12分)
0<
1
2k+1
1
3

1
3
≤2(
1
2
-
1
2k+1
)<1

1
3
2
(a1+1)(a2+1)
+
22
(a2+1)(a3+1)
+
23
(a3+1)(a4+1)
++
2n
(an+1)(an+1+1)
<1
(14分)
点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网