题目内容
【题目】函数f(x)=-x3-2x2+4x,当x∈[-3,3]时,f(x)≥a有恒成立,则实数a的取值范围是( )
A.(-3,11)
B.[-33,+∞)
C.(-∞,-33]
D.[2,7]
【答案】C
【解析】令f(x)=-3x2-4x+4,令f
(x)=0,可得x=-2或
.,f(-3)=-3,f(-2)=-8,f(
)=
,f(3)=-33,要使f(x)≥a在x∈[-3,3]上恒成立,只需fmin(x)≥a,所以的取值范围是(-∞,-33],故C符合题意.
所以答案是:C .
【考点精析】解答此题的关键在于理解函数的最大(小)值与导数的相关知识,掌握求函数在
上的最大值与最小值的步骤:(1)求函数
在
内的极值;(2)将函数
的各极值与端点处的函数值
,
比较,其中最大的是一个最大值,最小的是最小值.

【题目】某省高考改革新方案,不分文理科,高考成绩实行“3+3”的构成模式,第一个“3”是语文、数学、外语,每门满分150分,第二个“3”由考生在思想政治、历史、地理、物理、化学、生物6个科目中自主选择其中3个科目参加等级性考试,每门满分100分,高考录取成绩卷面总分满分750分.为了调查学生对物理、化学、生物的选考情况,将“某市某一届学生在物理、化学、生物三个科目中至少选考一科的学生”记作学生群体S,从学生群体S中随机抽取了50名学生进行调查,他们选考物理,化学,生物的科目数及人数统计如表:
选考物理、化学、生物的科目数 | 1 | 2 | 3 |
人数 | 5 | 25 | 20 |
(I)从所调查的50名学生中任选2名,求他们选考物理、化学、生物科目数量不相等的概率;
(II)从所调查的50名学生中任选2名,记X表示这2名学生选考物理、化学、生物的科目数量之差的绝对值,求随机变量X的分布列和数学期望;
(III)将频率视为概率,现从学生群体S中随机抽取4名学生,记其中恰好选考物理、化学、生物中的两科目的学生数记作Y,求事件“y≥2”的概率.