题目内容
11.直线L的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}t}\\{y=t+1}\end{array}\right.$(t为 参数),则直线L的倾斜角为$\frac{π}{6}$.分析 首先把直线的参数方程转化成直角坐标方程,进一步利用直线的倾斜角和斜率的关系求出结果.
解答 解:线L的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}t}\\{y=t+1}\end{array}\right.$(t为 参数),
转化成直角坐标方程为:y=$\frac{\sqrt{3}}{3}x+1$,设直线的倾斜角为θ,
则:tan$θ=\frac{\sqrt{3}}{3}$
由于直线倾斜角的范围为:[0,π)
所以:$θ=\frac{π}{6}$.
故答案为:$\frac{π}{6}$.
点评 本题考查的知识要点:直线的参数方程与直角坐标方程的互化,直线的倾斜角和斜率的关系.
练习册系列答案
相关题目
2.某市工业部门计划对所辖中小型工业企业推行节能降耗技术改造,对所辖企业是否支持改造进行问卷调查,结果如下表:
(Ⅰ)能否在犯错误的概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关?
(Ⅱ)从上述320家支持节能降耗改造的中小企业中按分层抽样的方法抽出12家,然后从这12家中选出9家进行奖励,分别奖励中、小企业每家50万元、10万元,记9家企业所获奖金总数为X万元,求X的分布列和期望.
附:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
支持 | 不支持 | 合计 | |
中型企业 | 80 | 40 | 120 |
小型企业 | 240 | 200 | 440 |
合计 | 320 | 240 | 560 |
(Ⅱ)从上述320家支持节能降耗改造的中小企业中按分层抽样的方法抽出12家,然后从这12家中选出9家进行奖励,分别奖励中、小企业每家50万元、10万元,记9家企业所获奖金总数为X万元,求X的分布列和期望.
附:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k0) | 0.050 | 0.025 | 0.010 |
k0 | 3.841 | 5.024 | 6.635 |
16.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-1,0),$\overrightarrow{c}$=(2,3),若$\overrightarrow{a}$+λ$\overrightarrow{b}$与$\overrightarrow{c}$垂直,则实数λ=( )
A. | -2 | B. | -$\frac{1}{3}$ | C. | $\frac{7}{3}$ | D. | 4 |
3.直线l:y=kx+1与圆O:x2+y2=1相交于A,B两点,则“k=1”是“|AB|=$\sqrt{2}$”的( )
A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
C. | 充分必要条件 | D. | 既不充分也不必要条件 |