题目内容
【题目】为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加. 现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.
(1)设为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”求事件发生的概率
(2)设为选出的4人中种子选手的人数,求随机变量的分布列和数学期望
【答案】
(1)
(2)
随机变量的分布列为
X | 1 | 2 | 3 | 4 |
P |
【解析】(1)由已知,有所以时间发生的概率为
(2)随机变量的所有可能取值为. 所以随机变量的分布列为
X | 1 | 2 | 3 | 4 |
P |
所以随机变量的数字期望
【考点精析】通过灵活运用互斥事件与对立事件和离散型随机变量及其分布列,掌握互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;(2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生;而对立事件是指事件A与事件B有且仅有一个发生,其包括两种情形;(1)事件A发生B不发生;(2)事件B发生事件A不发生,对立事件互斥事件的特殊情形;在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列即可以解答此题.
练习册系列答案
相关题目