题目内容
【题目】若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.
(1)写出所有个位数字是5的“三位递增数” ;
(2)若甲参加活动,求甲得分X的分布列和数学期望EX.
【答案】
(1)
个位数是5的“三位递增数”有:125,135,145,235,245,345
(2)
【解析】(1)个位数是5的“三位递增数”有:125,135,145,235,245,345
(11)由题意知,全部“三位递增数”的个数为=84
随机变量X的取值为:0,-1,1,
因此,
所以X的分布列为
因此EX=
【考点精析】本题主要考查了离散型随机变量及其分布列的相关知识点,需要掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列才能正确解答此题.
练习册系列答案
相关题目