题目内容

已知tanα=3,求下列各式的值:
(1)
4sinα-cosα
3sinα+5cosα

(2)
1
2sinαcosα+cos2α
分析:(1)将分式的分子和分母都除以cosα,结合同角三角函数的商数关系可得关于tanα的式子,再将tanα=3代入即可;
(2)首先利用“1的代换”将分子化成sin2α+cos2α,然后将分式的分子和分母都除以cos2α,结合同角三角函数的商数关系将原式化简成为关于tanα的式子,最后将tanα=3代入即可求出原式的值.
解答:解:(1)∵原式=
4sinα-cosα
3sinα+5cosα

∴分子分母都除以cosα,得
原式=
4sinα
cosα
-
cosα
cosα
3sinα
cosα
+
5cosα
cosα
=
4tanα-1
3tanα+5
4×3-1
3×3+5
=
11
14

(2)∵原式=
1
2sinαcosα+cos2α

∴将分子化成1=sin2α+cos2α,可得原式=
sin2α+cos2α
2sinαcosα+cos2α

再将分子分母都除以cos2α,得
原式=
sin2α
cos2α
+
cos2α
cos2α
2sinαcosα
cos2α
+
cos2α
cos2α
=
tan2α+1
2tanα+1
=
32+1
2×3+1
=
10
7
32+1
2×3+1
=
10
7
点评:本题给出角α的正切,求关于sinα、cosα的分式的值,着重考查了同角三角函数的基本关系的知识,属于基础题,解题时应该注意“弦化切”数学思想的运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网