题目内容
某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
零件的个数(个) | 2 | 3 | 4 | 5 |
加工的时间(小时) | 2.5 | 3 | 4 | 4.5 |
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出关于的线性回归方程,并在坐标系中画出回归直线;
(3)试预测加工个零件需要多少时间?
参考公式:回归直线,其中.
(1)见图;(2)线性回归方程为,回归直线见图;(3)预测加工个零件需要小时.
解析试题分析:(1)画散点图,即根据提供的数对,找出对应的点即可,这一点不难;(2)首先要了解提供的计算公式中每个部分的含义,然后分步计算,这样做的好处在于出错时便于检查是哪步出错了,也能分步得分;(3)若了解回归方程的意义和作用,此问也不难,这一题对回归分析这部分内容考查的比较全面,其实关键还是落实在知识的理解和计算能力上.
试题解析:(1)散点图如下图.
3分
(2)由表中数据得,,,
所以, 9分
因此回归直线如图中所示. 10分
(3)将代入回归直线方程,得(小时),
∴预测加工个零件需要小时. 12分
考点:线性回归方程及其应用.
为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下列表:
| 喜爱打篮球 | 不喜爱打篮球 | 合计 |
男生 | | 5 | |
女生 | 10 | | |
合计 | | | 50 |
(1)请将上表补充完整(不用写计算过程);
(2)能否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由.下面的临界值表供参考:
(参考公式:,其中)
为了估计某产品寿命的分布,对产品进行追踪调查,记录如下:
寿命(h) | 100~200 | 200~300 | 300~400 | 400~500 | 500~600 |
个数 | 20 | 30 | 80 | 40 | 30 |
画出频率分布直方图;(2)估计产品在200~500以内的频率.
巴西世界杯足球赛正在如火如荼进行.某人为了了解我校学生“通过电视收看世界杯”是否与性别有关,从全校学生中随机抽取30名学生进行了问卷调查,得到了如下列联表:
| 男生 | 女生 | 合计 |
收看 | 10 | | |
不收看 | | 8 | |
合计 | | | 30 |
已知在这30名同学中随机抽取1人,抽到“通过电视收看世界杯”的学生的概率是.
(I)请将上面的列联表补充完整,并据此资料分析“通过电视收看世界杯”与性别是否有关?
(II)若从这30名同学中的男同学中随机抽取2人参加一活动,记“通过电视收看世界杯”的人数为X,求X的分布列和均值.
0.100 | 0.050 | 0.010 | |
2.706 | 3.841 | 6.635 |
(参考公式:, )
高中流行这样一句话“文科就怕数学不好,理科就怕英语不好”.下
表是一次针对高三文科学生的调查所得的数据,试问:在出错概率不超过0.01的前提下文
科学生总成绩不好与数学成绩不好有关系吗?
| 总成绩好 | 总成绩不好 | 总计 |
数学成绩好 | 20 | 10 | 30 |
数学成绩不好 | 5 | 15 | 20 |
总计 | 25 | 25 | 50 |
(P(K2≥3.841)≈0.05,P(K2≥6.635)≈0.01)
某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
销量(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)根据上表可得回归直线方程中的,据此模型预报单价为10元时的销量为多少件?
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入成本)
(13分)(2011•广东)在某次测验中,有6位同学的平均成绩为75分.用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:
编号n | 1 | 2 | 3 | 4 | 5 |
成绩xn | 70 | 76 | 72 | 70 | 72 |
(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.