题目内容
16.为了得到函数y=cos(2x+$\frac{π}{3}$),x∈R的图象,只需把函数y=cos2x的图象( )A. | 向左平行移动$\frac{π}{6}$个单位长度 | B. | 向左平行移动$\frac{π}{3}$个单位长度 | ||
C. | 向右平行移动$\frac{π}{3}$个单位长度 | D. | 向右平行移动$\frac{π}{6}$个单位长度 |
分析 由调件根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.
解答 解:把函数y=cos2x的图象向左平行移动$\frac{π}{6}$个单位长度,可得函数y=cos2(x+$\frac{π}{6}$)=cos(2x+$\frac{π}{3}$)的图象,
故选:A.
点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.
练习册系列答案
相关题目
6.已知M是椭圆$\frac{{x}^{2}}{3}$+y2=1上任意一点,P是线段OM的中点,则$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$( )
A. | 没有最大值,也没有最小值 | B. | 有最大值,没有最小值 | ||
C. | 有最小值,没有最大值 | D. | 有最大值和最小值 |
5.函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})}^{x},x>0\\ f(-x),x<0\end{array}\right.$,f(log2$\frac{1}{6}$)的值等于( )
A. | $\frac{1}{4}$ | B. | 4 | C. | $\frac{1}{6}$ | D. | 6 |
6.随机掷两枚质地均匀的骰子,点数之和大于5的概率记为p1,点数之和为偶数的概率记为p2,则( )
A. | p1=p2 | B. | p1+p2=1 | C. | p1>p2 | D. | p1<p2 |