题目内容
设P为椭圆=1上的一点,F1,F2分别是该椭圆的左、右焦点,若|PF1|∶|PF2|=2∶1,则△PF1F2的面积为( ).
A.2 B.3 C.4 D.5
C
【解析】设P(x,y),则由已知易知F1(-,0),F2(,0).∵|PF1|∶|PF2|=2∶1,且|PF1|+|PF2|=6,∴|PF1|=4,|PF2|=2,即=4,=2,两式联立可解得得P,∴△PF1F2的面积为|F2F1|·|y|=×2×=4.
练习册系列答案
相关题目