题目内容
如图,在直三棱柱ABC-A1B1C1中,AB=2,AC=AA1=2
,∠ABC=
.
(1)证明:AB⊥A1C;
(2)求二面角A-A1C-B的正弦值.
3 |
π |
3 |
(1)证明:AB⊥A1C;
(2)求二面角A-A1C-B的正弦值.
(1)证明:在△ABC中,由正弦定理可求得sin∠ACB=
⇒∠ACB=
∴AB⊥AC
以A为原点,分别以AB、AC、AA1为
x、y、z轴,建立空间直角坐标系,如图
则A(0,0,0)A1(0,0,2
)B(2,0,0)C(0,2
,0)
=(2,0,0)
=(0,2
,-2
)
•
=0⇒
⊥
即AB⊥A1C.
(2)由(1)知
=(2,0,-2
)
设二面角A-A1C-B的平面角为α,cosα=cos<
,
>=
=
=
∴sinα=
=
1 |
2 |
π |
6 |
∴AB⊥AC
以A为原点,分别以AB、AC、AA1为
x、y、z轴,建立空间直角坐标系,如图
则A(0,0,0)A1(0,0,2
3 |
3 |
AB |
A1C |
3 |
3 |
AB |
A1C |
AB |
A1C |
即AB⊥A1C.
(2)由(1)知
A1B |
3 |
设二面角A-A1C-B的平面角为α,cosα=cos<
n |
m |
| ||||
|
|
2
| ||
2×
|
| ||
5 |
∴sinα=
1-cos2α |
| ||
5 |
练习册系列答案
相关题目