题目内容
已知是椭圆的左、右焦点,O为坐标原点,点P在椭圆上,线段与y轴的交点M满足
(Ⅰ) 求椭圆的标准方程;
(Ⅱ) 圆O是以为直径的圆,直线:与圆相切,并与椭圆交于不同的两点,当,且满足时,求直线的方程。
(Ⅰ) (Ⅱ)
解析试题分析:因为所以M为的中点,又O为的中点,所以OM//,轴。
设椭圆的标准方程为,c为半焦距,c=1.因为P在椭圆上,
所以,。所以椭圆方程为
(2)圆O的方程为,因为直线与圆O相切,所以。
又直线与椭圆交于不同的两点,设,
由方程组消y得,
又,,,
。。所以直线方程为。
考点:椭圆方程性质及直线与圆椭圆的位置关系
点评:直线与圆相切常用圆心到直线的距离等于圆的半径,直线与椭圆相交时常联立方程,利用韦达定理找到交点坐标与直线椭圆中参数的关系,将关系式再与其他条件结合
练习册系列答案
相关题目