题目内容
【题目】某高校调查喜欢“统计”课程是否与性别有关,随机抽取了55个学生,得到统计数据如表:
喜欢 | 不喜欢 | 总计 | |
男生 | 20 | ||
女生 | 20 | ||
总计 | 30 | 55 |
(1)完成表格的数据;
(2)判断是否在犯错误的概率不超过0.005的前提下认为喜欢“统计”课程与性别有关?
参考公式:
0.025 | 0.01 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)见解析;(2)在犯错误的概率不超过0.005的前提下认为喜欢“统计”课程与性别有关.
【解析】
(1)根据表中的数据即可完成列联表;
(2)根据列联表,求出观测值,利用观测值同临界值表进行比较,即可判断.
(1)解:由表知,喜欢“统计”课程女生人数为(人),
不喜欢“统计”课程的总人数为(人),
不喜欢“统计”课程男生人数为(人),则列联表为
喜欢 | 不喜欢 | 总计 | |
男生 | 20 | 5 | 25 |
女生 | 10 | 20 | 30 |
总计 | 30 | 25 | 55 |
(2)解:设 喜欢“统计”课程与性别无关,由(1)可知列联表为:
喜欢 | 不喜欢 | 总计 | |
男生 | 20 | 5 | 25 |
女生 | 10 | 20 | 30 |
总计 | 30 | 25 | 55 |
则 ,
所以在犯错误的概率不超过0.005的前提下认为喜欢“统计”课程与性别有关.
【题目】某车站在春运期间为了了解旅客购票情况,随机抽样调查了100名旅客从开始在售票窗口排队到购到车票所用的时间t(以下简称为购票用时,单位为min),下面是这次调查统计分析得到的频率分布表和频率分布直方图(如图所示).
分组 | 频数 | 频率 | |
一组 | 0≤t<5 | 0 | 0 |
二组 | 5≤t<10 | 10 | 0.10 |
三组 | 10≤t<15 | 10 | ② |
四组 | 15≤t<20 | ① | 0.50 |
五组 | 20≤t≤25 | 30 | 0.30 |
合计 | 100 | 1.00 |
解答下列问题:
(1)这次抽样的样本容量是多少?
(2)在表中填写出缺失的数据并补全频率分布直方图;
(3)旅客购票用时的平均数可能落在哪一组?
【题目】
随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 |
时间代号 | 1 | 2 | 3 | 4 | 5 |
储蓄存款(千亿元) | 5 | 6 | 7 | 8 | 10 |
(Ⅰ)求y关于t的回归方程
(Ⅱ)用所求回归方程预测该地区2015年()的人民币储蓄存款.
附:回归方程中