题目内容

3.命题p:不等式ax2-2ax+1>0的解集为R,命题q:不等式$\frac{\sqrt{3}}{4}$sinx+$\frac{1}{4}$cosx-a<0恒成立,若“p∧q”为假命题且“p∨q”为真命题,求实数a的取值范围.

分析 分别求出p,q为真时的a的范围,通过讨论p,q的真假,从而求出a的范围.

解答 解:∵函数f(x)=lg(ax2-2ax+1)的定义域为R
∴ax2-2ax+1>0恒成立…(2分)
∴a=0或$\left\{\begin{array}{l}{a>0}\\{△<0}\end{array}\right.$…(4分)
解得0≤a<1…(5分)
又∵不等式$\frac{\sqrt{3}}{4}$sinx+$\frac{1}{4}$cosx-a<0恒成立,
∴a>$\frac{1}{2}$…(8分)
若“p∧q”为假命题且“p∨q”为真命题
则p,q一真一假,
所以0≤a≤$\frac{1}{2}$或a≥1.…(12分)

点评 本题考查了函数恒成立问题,考查复合命题的判断,是一道基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网