题目内容

如图,椭圆的长轴长为,点为椭圆上的三个点,为椭圆的右端点,过中心,且

(1)求椭圆的标准方程;
(2)设是椭圆上位于直线同侧的两个动点(异于),且满足,试讨论直线与直线斜率之间的关系,并求证直线的斜率为定值.
(1);(2)详见解析.

试题分析:(1)利用题中条件先得出的值,然后利用条件结合椭圆的对称性得到点的坐标,然后将点的坐标代入椭圆方程求出的值,从而确定椭圆的方程;(2)将条件
得到直线的斜率直线的关系(互为相反数),然后设直线的方程为,将此直线的方程与椭圆方程联立,求出点的坐标,注意到直线的斜率之间的关系得到点的坐标,最后再用斜率公式证明直线的斜率为定值.
(1)
是等腰三角形,所以
点代入椭圆方程,求得
所以椭圆方程为
(2)由题易得直线斜率均存在,
,所以
设直线代入椭圆方程
化简得
其一解为,另一解为
可求
代入得
为定值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网