题目内容
已知函数.
(1)若曲线在点处的切线与直线垂直,求实数的值.
(2)若,求的最小值;
(3)在(Ⅱ)上求证:.
(Ⅰ)或.
(Ⅱ)函数在上单调递减,在上单调递增;
(Ⅲ)当
。。
解析试题分析:(Ⅰ)的定义域为,,根据题意有,
所以解得或. 4分
(Ⅱ)
当时,因为,由得,解得,
由得,解得,
所以函数在上单调递减,在上单调递增; 8分
(Ⅲ)由(2)知,当a>0, 的最小值为
令
当
。 13分
考点:本题主要考查导数的几何意义,应用导数研究函数的单调性、最值及不等式的证明。
点评:典型题,本题属于导数应用中的基本问题,通过研究函数的单调性,明确了极值情况。通过研究函数的单调区间、最值情况,得到证明不等式。涉及对数函数,要特别注意函数的定义域。
练习册系列答案
相关题目