题目内容
【题目】在中,且,边上的中线长为,则的面积是____.
【答案】
【解析】
根据题意,将变形可得sinB=1+cosC,又由B+C=,则sinB=1+cosC可以变形为cos(C+)=﹣1,分析可得C的值,进而可得B的值,分析可得,△ABC为等腰三角形,设D为BC中点,AD=,设AC=x,在△ACD中,由余弦定理可得cosC=,计算可得x的值,由三角形面积公式计算可得答案.
根据题意,△ABC中,,则有sinB=,变形可得sinB=1+cosC,
则有cocC=sinB﹣1<0,则C为钝角,B为锐角;
又由A=,则B+C=,
则sinB=1+cosCsin(﹣C)=1+cosCcos(C+)=﹣1,
C为钝角,则C=,B=﹣C=,
则△ABC中,A=B=,则有AC=BC,△ABC为等腰三角形,
设D为BC中点,AD=,设AC=x,
则有cosC=
解可得x=2,
则S△ABC=×AC×BC×sinC=×2×2×sin=
故答案为:
【题目】近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的分类垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1 000吨生活垃圾,数据统计如下(单位:吨):
“厨余垃圾”箱 | “可回收物”箱 | “其他垃圾”箱 | |
厨余垃圾 | 400 | 100 | 100 |
可回收物 | 30 | 240 | 30 |
其他垃圾 | 20 | 20 | 60 |
(1)试估计厨余垃圾投放正确的概率P;
(2)试估计生活垃圾投放错误的概率;
(3)假设厨余垃圾在“厨余垃圾”箱,“可回收物”箱,“其他垃圾”箱的投放量分别为a、b、c,其中a>0,a+b+c=600. 当数据a、b、c的方差s2最大时,写出a、b、c的值(结论不要求证明),并求出此时s2的值.
【题目】针对某地区的一种传染病与饮用水进行抽样调查发现:饮用干净水得病5人,不得病50人;饮用不干净水得病9人,不得病22人。
(1)作出2×2列联表
(2)能否有90%的把握认为该地区中得传染病与饮用水有关?
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |