题目内容
【题目】已知函数f(x)=x3+ax2+bx+c,x∈[-2,2]表示过原点的曲线,且在x=±1处的切线的倾斜角均为π,有以下命题:
①f(x)的解析式为f(x)=x3-4x,x∈[-2,2].
②f(x)的极值点有且只有一个.
③f(x)的最大值与最小值之和等于零.
其中正确命题的序号为________.
【答案】①③.
【解析】分析:先根据已知条件,列出的方程组并解之得由此得到①是真命题;对函数进行求导运算,可得在区间[-2,2]上导数有两个零点,函数也就有两个极值点,故②为假命题;根据函数为奇函数,结合奇函数的图像与性质可得的最大值与最小值之和为零,故③为真命题,由此可得正确答案.
详解:因为函数
所以得
对函数求导数,得结合题意知
,解之得
对于①,函数解析式为故①是真命题;
对于②因为,在区间 [-2,2]上有两个零点,故的极值点有两个,得②为假命题.
对于③,因为函数为奇函数,所以若它在[-2,2]上的最大值为,则它的最小值为,所以的最大值与最小值之和为零,故命题③为真命题.
故本题答案为①③..
练习册系列答案
相关题目
【题目】2018年2月25日第23届冬季奥动会在韩国平昌闭幕,中国以金银铜的成绩结束本次冬奥会的征程,某校体育爱好者协会对某班进行了“本届冬奥会中国队表现”的满意度调查(结果只有“满意”和“不满意”两种),按分层抽样从该班学生中随机抽取了人,具体的调查结果如下表:
某班 | 满意 | 不满意 |
男生 | ||
女生 |
(1)若该班女生人数比男生人数多人,求该班男生人数和女生人数;
(2)若从该班调查对象的女生中随机选取人进行追踪调查,记选中的人中“满意”的人数为,求时对应事件的概率.