题目内容

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,椭圆C上的点到左焦点F距离的最小值与最大值之积为1.
(1)求椭圆C的方程;
(2)直线l过椭圆C内一点M(m,0),与椭圆C交于P、Q两点.对给定的m值,若存在直线l及直线母x=-2上的点N,使得△PNQ的垂心恰为点F,求m的取值范围.
(1)由条件得
c
a
=
2
2
(a+c)(a-c)=1
,解得a=
2
,b=c=1
∴椭圆C的方程为
x2
2
+y2=1

(2)由条件知,F(-1,0),-
2
<m<
2

设P(x1,y1),Q(x2,y2),N(-2,y1),则由
λy=x-m
x2
2
+y2=1
得(λ2+2)y2+2λmy+m2-2=0,
-
2
<m<
2
知△>0恒成立,且y1+y2=-
2λm
λ2+2
y1y2=
m2-2
λ2+2

由PQ⊥NF得y1=λ,(1)
由NQ⊥PF得
y2-y1
x2+2
×
y1
x1+1
=-1
,(2)
由(1)(2)式化简得,(λ2+1)y1y2+λ(m+1)(y1+y2)+(m+1)(m+2)=0
化简得,mλ2=-(3m2+6m+2)(显然m≠0),
由λ2≥0,-
2
<m<
2
得,解得
3
-3
3
≤m<0

∴m的取值范围[
3
-3
3
,0
).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网