题目内容

设向量
=(x , 2)
=(x+n , 2x-1)
(n为正整数),函数y=
在[0,1]上的最小值与最大值的和为an,又数列{bn}满足:nb1+(n-1)b2+…+2bn-1+bn=(
9
10
)n-1+(
9
10
)n-2+…+
9
10
+1

(1)求证:an=n+1(2).
(2)求bn的表达式.
(3)若cn=-an•bn,试问数列{cn}中,是否存在正整数k,使得对于任意的正整数n,都有cn≤ck成立?证明你的结论.(注:
=( a1 ,a2 )
={ a1 ,a2 }
表示意义相同)
分析:(1)对称轴x=-
n+4
2
<0
,所以y=x2+(n+4)x-2在[0,1]上为增函数,故可证;
(2)由数列{bn}满足的条件,再写一式,两式相减可求;
(3)设存在自然数k,使对n∈N,cn≤ck恒成立,易得当n<8时,cn+1>cn,当n=8时,cn+1=cn,当n>8时,cn+1<cn故得解.
解答:解:(1)证明:对称轴x=-
n+4
2
<0
,所以y=x2+(n+4)x-2在[0,1]上为增函数---(2分)
an=(-2)+(n+3)=n+1--(4分)
(2)解:由nb1+(n-1)b2+…+2bn-1+bn=(
9
10
)n-1+(
9
10
)n-2+…+
9
10
+1

得,(n-1)b1+(n-2)b2+…+bn-1=(
9
10
)n-2+…+
9
10
+1
两式相减,
b1+b2+…+bn=(
9
10
)n-1=Sn

∴当n=1时,b1=S1=1
当n≥2时,bn=Sn-Sn-1=-
1
10
(
9
10
)n-2

bn=
1… …当n=1时
-
1
10
(
9
10
)n-2…当n≥2时


(3)由(1)与(2)得cn=-anbn=
-2… …当n=1时
n+1
10
(
9
10
)n-2…当n≥2时

设存在自然数k,使对n∈N,cn≤ck恒成立
当n=1时,c2-c1=
23
10
>0?c2c1

当n≥2时,cn+1-cn=(
9
10
)n-2
8-n
100

∴当n<8时,cn+1>cn
当n=8时,cn+1=cn,当n>8时,cn+1<cn
所以存在正整数k=9,使对任意正整数n,均有c1<c2<…<c8=c9>c10>c11>…
点评:本题考查数列的性质及其应用,难度较大,解题时要认真审题,仔细解答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网