题目内容
3.函数f(x)=x3-3x极大值为2.分析 先求函数的导函数,再解不等式f′(x)>0和f′(x)<0得函数的单调区间,进而由极值的定义求得函数的极值点和极值
解答 解:∵f′(x)=3x2-3=3(x+1)(x-1),
∴函数f(x)=x3-3x在(-∞,-1)是增函数,在(-1,1)上是减函数,在(1,+∞)是增函数,
∴函数f(x)=x3-3x在x=-1时取得极大值2,
故答案为:2.
点评 利用导数工具求该函数的极值是解决该题的关键,要先确定出导函数等于零的实数x的值,再讨论出函数的单调区间,根据极值的判断方法求出该函数的极值,体现了导数的工具作用.
练习册系列答案
相关题目
11.已知f(x)=x3+ax2+(a+6)x+1既有极大值又有极小值,则a的取值范围为( )
A. | a≤-1或a≥2 | B. | a<-1或a>2 | C. | a≤-3或a≥6 | D. | a<-3或a>6 |
15.若函数f(x)=x3+ax2+bx+a2在x=1时有极值10,则实数a,b的值是( )
A. | $\left\{{\begin{array}{l}{a=-3}\\{b=3}\end{array}}\right.$ | B. | $\left\{{\begin{array}{l}{a=4}\\{b=-11}\end{array}}\right.$ | ||
C. | $\left\{{\begin{array}{l}{a=-3}\\{b=3}\end{array}}\right.$或$\left\{{\begin{array}{l}{a=4}\\{b=-11}\end{array}}\right.$ | D. | $\left\{{\begin{array}{l}{a=-3}\\{b=-11}\end{array}}\right.$或$\left\{{\begin{array}{l}{a=4}\\{b=3}\end{array}}\right.$ |