题目内容

【题目】某校计划面向高一年级1200名学生开设校本选修课程,为确保工作的顺利实施,先按性别进行分层抽样,抽取了180名学生对社会科学类,自然科学类这两大类校本选修课程进行选课意向调查,其中男生有105人.在这180名学生中选择社会科学类的男生、女生均为45人.
(Ⅰ)分别计算抽取的样本中男生及女生选择社会科学类的频率,并以统计的频率作为概率,估计实际选课中选择社会科学类学生数;
(Ⅱ)根据抽取的180名学生的调查结果,完成下列列联表.并判断能否在犯错误的概率不超过0.025的前提下认为科类的选择与性别有关?

选择自然科学类

选择社会科学类

合计

男生

女生

合计

附: ,其中n=a+b+c+d.

P(K2≥k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

K0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】解:(Ⅰ)由条件知,抽取的男生为105人,女生为180﹣105=75人;
男生选择社会科学类的频率为 ,女生选择社会科学类的频率为
由题意,男生总数为 人,
女生总数为 人,
所以,估计选择社会科学的人数为 人;
(Ⅱ)根据统计数据,可得列联表如下:

选择自然科学类

选择社会科学类

合计

男生

60

45

105

女生

30

45

75

合计

90

90

180

计算观测值
所以,在犯错误的概率不超过0.025的前提下认为科类的选择与性别有关.
【解析】(Ⅰ)计算抽取的男生与女生人数,根据分层抽样原理求出对应男生、女生人数;(Ⅱ)根据统计数据,填写列联表,计算观测值,比较临界值得出结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网