题目内容
【题目】已知椭圆C: 的右焦点为F(1,0),且点(﹣1, )在椭圆C上.
(1)求椭圆C的标准方程;
(2)已知动直线l过点F,且与椭圆C交于A,B两点,试问x轴上是否存在定点Q,使得 恒成立?若存在,求出点Q的坐标,若不存在,请说明理由.
【答案】
(1)解:由题意,c=1
∵点(﹣1, )在椭圆C上,∴根据椭圆的定义可得:2a= ,∴a=
∴b2=a2﹣c2=1,
∴椭圆C的标准方程为
(2)解:假设x轴上存在点Q(m,0),使得 恒成立
当直线l的斜率为0时,A( ,0),B(﹣ ,0),则 =﹣ ,∴ ,∴m= ①
当直线l的斜率不存在时, , ,则 =﹣ ,
∴
∴m= 或m= ②
由①②可得m= .
下面证明m= 时, 恒成立
当直线l的斜率为0时,结论成立;
当直线l的斜率不为0时,设直线l的方程为x=ty+1,A(x1,y1),B(x2,y2)
直线方程代入椭圆方程,整理可得(t2+2)y2+2ty﹣1=0,∴y1+y2=﹣ ,y1y2=﹣
∴ =(x1﹣ ,y1)(x2﹣ ,y2)=(ty1﹣ )(ty2﹣ )+y1y2=(t2+1)y1y2﹣ t(y1+y2)+ = + =﹣
综上,x轴上存在点Q( ,0),使得 恒成立
【解析】(1)利用椭圆的定义求出a的值,进而可求b的值,即可得到椭圆的标准方程;(2)先利用特殊位置,猜想点Q的坐标,再证明一般性也成立即可.
【题目】某校计划面向高一年级1200名学生开设校本选修课程,为确保工作的顺利实施,先按性别进行分层抽样,抽取了180名学生对社会科学类,自然科学类这两大类校本选修课程进行选课意向调查,其中男生有105人.在这180名学生中选择社会科学类的男生、女生均为45人.
(Ⅰ)分别计算抽取的样本中男生及女生选择社会科学类的频率,并以统计的频率作为概率,估计实际选课中选择社会科学类学生数;
(Ⅱ)根据抽取的180名学生的调查结果,完成下列列联表.并判断能否在犯错误的概率不超过0.025的前提下认为科类的选择与性别有关?
选择自然科学类 | 选择社会科学类 | 合计 | |
男生 | |||
女生 | |||
合计 |
附: ,其中n=a+b+c+d.
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
K0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |