ÌâÄ¿ÄÚÈÝ
7£®ÏÂÁÐ˵·¨ÕýÈ·µÄÊǸöÊýΪ£¨¡¡¡¡£©¢Ùa=1ÊÇÖ±Ïßx-ay=0ÓëÖ±Ïßx+ay=0»¥Ïà´¹Ö±µÄ³äÒªÌõ¼þ
¢ÚÖ±Ïßx=$\frac{¦Ð}{12}$ÊǺ¯Êý$y=2sin£¨2x-\frac{¦Ð}{6}£©$µÄͼÏóµÄÒ»Ìõ¶Ô³ÆÖá
¢ÛÒÑÖªÖ±Ïßl£ºx+y+2=0ÓëÔ²C£º£¨x-1£©2+£¨y+1£©2=2£¬ÔòÔ²ÐÄCµ½Ö±ÏßlµÄ¾àÀëÊÇ2$\sqrt{2}$
¢ÜÈôÃüÌâP£º¡°´æÔÚx0¡ÊR£¬x02-x0-1£¾0¡±£¬ÔòÃüÌâPµÄ·ñ¶¨£º¡°ÈÎÒâx¡ÊR£¬x2-x-1¡Ü0¡±
A£® | 1 | B£® | 2 | C£® | 3 | D£® | 4 |
·ÖÎö ¢Ùa=¡À1ÊÇÖ±Ïßx-ay=0ÓëÖ±Ïßx+ay=0»¥Ïà´¹Ö±µÄ³äÒªÌõ¼þ£¬¼´¿ÉÅжϳöÕýÎó£»
¢Ú¸ù¾Ý$sin£¨2¡Á\frac{¦Ð}{12}-\frac{¦Ð}{6}£©$=0¡Ù¡À1£¬¼´¿ÉÅжϳöÕýÎó£»
¢ÛÀûÓõ㵽ֱÏߵľàÀ빫ʽ¹«Ê½¼ÆËã³ö¾àÀ룬¼´¿ÉÅжϳöÕýÎó£»
¢ÜÀûÓÃÃüÌâµÄ·ñ¶¨£¬¼´¿ÉÅжϳöÕýÎó£®
½â´ð ½â£º¢Ùa=¡À1ÊÇÖ±Ïßx-ay=0ÓëÖ±Ïßx+ay=0»¥Ïà´¹Ö±µÄ³äÒªÌõ¼þ£¬Òò´ËÊǼÙÃüÌ⣻
¢Ú¡ß$sin£¨2¡Á\frac{¦Ð}{12}-\frac{¦Ð}{6}£©$=0¡Ù¡À1£¬Òò´ËÖ±Ïßx=$\frac{¦Ð}{12}$²»ÊǺ¯Êý$y=2sin£¨2x-\frac{¦Ð}{6}£©$µÄͼÏóµÄÒ»Ìõ¶Ô³ÆÖᣬÊǼÙÃüÌ⣻
¢ÛÔ²ÐÄC£¨-1£¬1£©µ½Ö±ÏßlµÄ¾àÀë=$\frac{|1-1+2|}{\sqrt{2}}$=$\sqrt{2}$£¬Òò´ËÊǼÙÃüÌ⣻
¢ÜÈôÃüÌâP£º¡°´æÔÚx0¡ÊR£¬x02-x0-1£¾0¡±£¬ÔòÃüÌâPµÄ·ñ¶¨£º¡°ÈÎÒâx¡ÊR£¬x2-x-1¡Ü0¡±£¬ÊÇÕæÃüÌ⣮
Òò´ËÖ»ÓУº¢ÜÕýÈ·£®
¹ÊÑ¡£ºA£®
µãÆÀ ±¾Ì⿼²éÁ˼òÒ×Âß¼µÄÅж¨·½·¨¡¢Ï໥´¹Ö±µÄÖ±ÏßбÂÊÖ®¼äµÄ¹Øϵ¡¢Èý½Çº¯ÊýµÄͼÏóÓëÐÔÖÊ¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢ÃüÌâµÄ·ñ¶¨£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
A£® | z£¼x£¼y | B£® | x£¼y£¼z | C£® | y£¼x£¼z | D£® | x£¼z£¼y |
A£® | 1 | B£® | $\frac{1}{2}$ | C£® | $\sqrt{3}$ | D£® | $\frac{\sqrt{3}}{2}$ |
A£® | M¡ÉN=∅ | B£® | M¡ÉN=M | C£® | M¡ÈN=M | D£® | M¡ÈN=R |