题目内容
【题目】△ABC的三个顶点分别为A(0,4)、B(-2,6)、C(-8,0).
(1)分别求边AC和AB所在直线的方程;
(2)求AC边上的中线BD所在直线的方程;
(3)求AC边的中垂线所在直线的方程;
(4)求AC边上的高所在直线的方程;
(5)求经过两边AB和AC的中点的直线方程.
【答案】(1)x-2y+8=0. x+y-4=0.(2)2x-y+10=0.(3)2x+y+6=0.(4)2x+y-2=0.(5)x-y+6=0
【解析】试题分析:(1)利用截距式得AC方程,利用两点式得AB方程;(2)先确定AC边中点坐标,再由两点式得BD的方程;(3)由中垂线几何性质可知:AC的中垂线斜率及AC的中点的坐标,再由点斜式得直线方程;(4)由高的定义得高所在直线的斜率,再由点斜式得直线方程;(5)得到两边的中点坐标,再由两点式得直线的方程.
试题解析:
(1)由A(0,4),C(-8,0)可得直线AC的截距式方程为+=1,
即x-2y+8=0.
由A(0,4),B(-2,6)可得直线AB的两点式方程为=,即x+y-4=0.
(2)设AC边的中点为D(x,y),由中点坐标公式可得x=-4,y=2,所以直线BD的两点式方程为=,即2x-y+10=0.
(3)由直线AC的斜率为kAC==,故AC边的中垂线的斜率为k=-2.又AC的中点D(-4,2),
所以AC边的中垂线方程为y-2=-2(x+4),
即2x+y+6=0.
(4)AC边上的高线的斜率为-2,且过点B(-2,6),所以其点斜式方程为y-6=-2(x+2),即2x+y-2=0.
(5)AB的中点M(-1,5),AC的中点D(-4,2),
∴直线DM方程为=,
即x-y+6=0.
练习册系列答案
相关题目