题目内容
【题目】(本题满分12分)已知椭圆,直线不过原点且不平行于坐标轴,与有两个交点,,线段的中点为.
(Ⅰ)证明:直线的斜率与的斜率的乘积为定值;
(Ⅱ)若过点,延长线段与交于点,四边形能否为平行四边形?若能,求此时的斜率,若不能,说明理由.
【答案】(Ⅰ)详见解析;(Ⅱ)能,或.
【解析】
试题分析:(1)设直线 ,直线方程与椭圆方程联立,根据韦达定理求根与系数的关系,并表示直线的斜率,再表示;
(2)第一步由 (Ⅰ)得的方程为.设点的横坐标为,直线与椭圆方程联立求点的坐标,第二步再整理点的坐标,如果能构成平行四边形,只需,如果有值,并且满足,的条件就说明存在,否则不存在.
试题解析:解:(1)设直线 ,,,.
∴由得,
∴,.
∴直线的斜率,即.
即直线的斜率与的斜率的乘积为定值.
(2)四边形能为平行四边形.
∵直线过点,∴不过原点且与有两个交点的充要条件是,
由 (Ⅰ)得的方程为.设点的横坐标为.
∴由得,即
将点的坐标代入直线的方程得,因此.
四边形为平行四边形当且仅当线段与线段互相平分,即
∴ .解得,.
∵,,,
∴当的斜率为或时,四边形为平行四边形.
【题目】某品牌新款夏装即将上市,为了对新款夏装进行合理定价,在该地区的三家连锁店各进行了两天试销售,得到如下数据:
连锁店 | A店 | B店 | C店 | |||
售价x(元) | 80 | 86 | 82 | 88 | 84 | 90 |
销量y(元) | 88 | 78 | 85 | 75 | 82 | 66 |
(1)分别以三家连锁店的平均售价与平均销量为散点,如A店对应的散点为,求出售价与销量的回归直线方程;
(2)在大量投入市场后,销量与单价仍然服从(1)中的关系,且该夏装成本价为40元/件,为使该新夏装在销售上获得最大利润,该款夏装的单价应定为多少元?(保留整数)
附:,.
【题目】某品牌新款夏装即将上市,为了对新款夏装进行合理定价,在该地区的三家连锁店各进行了两天试销售,得到如下数据:
连锁店 | A店 | B店 | C店 | |||
售价x(元) | 80 | 86 | 82 | 88 | 84 | 90 |
销量y(元) | 88 | 78 | 85 | 75 | 82 | 66 |
(1)分别以三家连锁店的平均售价与平均销量为散点,如A店对应的散点为,求出售价与销量的回归直线方程;
(2)在大量投入市场后,销量与单价仍然服从(1)中的关系,且该夏装成本价为40元/件,为使该新夏装在销售上获得最大利润,该款夏装的单价应定为多少元?(保留整数)
附:,.
【题目】一次考试中,五名学生的数学、物理成绩如下表所示:
学生 | A1 | A2 | A3 | A4 | A5 |
数学(x分) | 89 | 91 | 93 | 95 | 97 |
物理(y分) | 87 | 89 | 89 | 92 | 93 |
(1)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率;
(2)请在所给的直角坐标系中画出它们的散点图,并求这些数据线性回归方程.