题目内容
5.如图,过点P作圆O的割线PAB与切线PE,E为切点,连接AE,BE,∠APE的平分线与AE,BE分别交于点C,D,若∠AEB=30°,则∠PCE=75°.分析 利用弦切角,以及三角形的外角与内角的关系,结合图形即可解决.
解答 解:如图,PE 是圆的切线,
∴∠PEB=∠PAC,
∵PC是∠APE的平分线,
∴∠EPC=∠APC,
根据三角形的外角与内角关系有:
∠EDC=∠PEB+∠EPC;∠ECD=∠PAC+∠APC,
∴∠EDC=∠ECD,
∴△EDC为等腰三角形,又∠AEB=30°,
∴∠EDC=∠ECD=75°,
即∠PCE=75°,
故答案为:75°.
点评 本题考查弦切角的性质和应用,合理运用三角形的外角与内角的关系和数形结合法是关键.
练习册系列答案
相关题目
15.“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.
(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称与否和年龄有关;说明你的理由;(下面的临界值表供参考)
(2)现计划在这次场外调查中按年龄段选取9名选手,并抽取3名幸运选手,求3名幸运选手中在20~30岁之间的人数的分布列和数学期望.
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)
(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称与否和年龄有关;说明你的理由;(下面的临界值表供参考)
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)
16.已知函数f(x)满足f(0)=1,且对于任意实数x,y∈R都有:f(xy+1)=f(x)f(y)-f(y)-x+2,若x∈[1,3],则$\frac{f(x-1)}{{f}^{2}(x)+1}$的最大值为( )
A. | $\frac{\sqrt{2}-1}{2}$ | B. | $\frac{\sqrt{2}+1}{2}$ | C. | $\frac{1}{5}$ | D. | $\frac{3}{17}$ |
13.已知M={x|x2-x=0},N={y|y2+y=0},则M∩N=( )
A. | {-1,1,0} | B. | {-1,1} | C. | {0} | D. | ∅ |