题目内容
13.动直线(2k-1)x-(k+2)y+(8-k)=0过定点(2,3).分析 将直线(2k-1)x-(k+2)y+(8-k)=0化为k(2x-y-1)+(-x-2y+8)=0,由$\left\{\begin{array}{l}{2x-y-1=0}\\{-x-2y+8=0}\end{array}\right.$,可得$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$,从而得到答案.
解答 解:将直线(2k-1)x-(k+2)y+(8-k)=0化为k(2x-y-1)+(-x-2y+8)=0,
由$\left\{\begin{array}{l}{2x-y-1=0}\\{-x-2y+8=0}\end{array}\right.$,可得$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$
∴直线经过定点(2,3).
故答案为:(2,3).
点评 本题给出含有参数k的直线方程,求直线经过的定点坐标.着重考查了直线的基本量与基本形式等知识,属于基础题.
练习册系列答案
相关题目
8.F是双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a,b>0)的焦点,过F作x轴的垂线,与双曲线交于点A,过F作与渐近线平行的直线,与双曲线交于点B.若三角形FAB为直角三角形,则双曲线C的离心率为( )
A. | 不是定值 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $\frac{2\sqrt{3}}{3}$ |