题目内容
9.已知数列{an}与{bn}满足:bnan+an+1+bn+1an+2=0,bn=$\frac{3+(-1)^{n}}{2}$,n∈N*,且a1=2,a2=4.(1)求a3,a4,a5的值;
(2)设cn=a2n-1+a2n+1,n∈N*,证明:{cn}是等比数列.
分析 (1)先化简bn=$\frac{3+(-1)^{n}}{2}$求出bn,令n=1、2、3代入bnan+an+1+bn+1an+2=0,结合条件依次求出a3,a4,a5的值;
(2)根据cn、bn的表达式,令n=2n-1、2n、2n+1代入bnan+an+1+bn+1an+2=0,列出三个方程并进行化简得到{an}的递推公式,再根据等比数列的定义证明{cn}是等比数列.
解答 解:(1)由bn=$\frac{3+(-1)^{n}}{2}$得,bn=$\left\{\begin{array}{l}{1,n是奇数}\\{2,n是偶数}\end{array}\right.$,
又a1=2,a2=4,bnan+an+1+bn+1an+2=0,
则当n=1时,b1a1+a2+b2a3=0,解得a3=-3,
当n=2时,b2a2+a3+b3a4=0,解得a4=-5,
当n=3时,b3a3+a4+b4a5=0,解得a5=4;
证明:(2)∵bnan+an+1+bn+1an+2=0,
∴b2n-1a2n-1+a2n+b2na2n+1=0,即a2n-1+a2n+2a2n+1=0,①
b2na2n+a2n+1+b2n+1a2n+2=0,即2a2n+a2n+1+a2n+2=0,②
b2n+1a2n+1+a2n+2+b2n+2a2n+3=0,a2n+1+a2n+2+2a2n+3=0,③
②-③得,a2n=a2n+3,代入①得,a2n-1+a2n+3+2a2n+1=0,
∴a2n-1+a2n+1=-(a2n+1+a2n+3),
∵cn=a2n-1+a2n+1,∴cn=-cn+1,
∵c1=a1+a3=-1,∴cn≠0,则$\frac{{c}_{n+1}}{{c}_{n}}$=-1,
∴{cn}是以-1为首项、公比的等比数列.
点评 本题考查等比数列的证明方法:定义法,以及数列的递推公式的化简及应用,考查化简、变形能力.