题目内容
【题目】部分与整体以某种相似的方式呈现称为分形,一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统.分形几何学不仅让人们感悟到科学与艺木的融合,数学与艺术审美的统一,而且还有其深刻的科学方法论意义.如图,由波兰数学家谢尔宾斯基1915年提出的谢尔宾斯基三角形就属于-种分形,具体作法是取一个实心三角形,沿三角形的三边中点连线,将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程逐次得到各个图形.
若在图④中随机选取-点,则此点取自阴影部分的概率为( )
A.B.C.D.
【答案】C
【解析】
根据图①,②,③归纳得出阴影部分的面积与大三角形的面积之比,再用几何概型的概率公式可得答案.
依题意可得:图①中阴影部分的面积等于大三角形的面积,
图②中阴影部分的面积是大三角形面积的,
图③中阴影部分的面积是大三角形面积的,
归纳可得,图④中阴影部分的面积是大三角形面积的,
所以根据几何概型的概率公式可得在图④中随机选取-点,则此点取自阴影部分的概率为.
故选:C
练习册系列答案
相关题目
【题目】某班随机抽查了名学生的数学成绩,分数制成如图的茎叶图,其中组学生每天学习数学时间不足个小时,组学生每天学习数学时间达到一个小时,学校规定分及分以上记为优秀,分及分以上记为达标,分以下记为未达标.
(1)根据茎叶图完成下面的列联表:
达标 | 未达标 | 总计 | |
组 | |||
组 | |||
总计 |
(2)判断是否有的把握认为“数学成绩达标与否”与“每天学习数学时间能否达到一小时”有关.
参考公式与临界值表:,其中.